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Abstract In this paper we extend the theory of Gröbner bases to difference-differential modules and

present a new algorithmic approach for computing the Hilbert function of a finitely generated difference-

differential module equipped with the natural filtration. We present and verify algorithms for construct-

ing these Gröbner bases counterparts. To this aim we introduce the concept of “generalized term order”

on Nm×Zn and on difference-differential modules. Using Gröbner bases on difference-differential mod-

ules we present a direct and algorithmic approach to computing the difference-differential dimension

polynomials of a difference-differential module and of a system of linear partial difference-differential

equations.
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1 Introduction

The efficiency of the classical Gröbner basis method for the solution of problems by algorithmic
way in polynomial ideal theory is well-known. The results of Buchberger[1] on Gröbner bases in
polynomial rings have been generalized by many researchers to non-commutative case, especially
to modules over various rings of differential operators. Galligo[2] first gave the Gröbner basis
algorithm for the Weyl algebra An. Mora[3] generalized the concept of Gröbner basis to non-
commutative free algebras. Noumi[4] and Takayama[5] formulated the Gröbner bases in Rn, the
ring of differential operators with rational function coefficients. Oaku and Shimoyama[6] treated
D0, the ring of differential operators with power series coefficients. Insa and Pauer[7] presented
a basic theory of Gröbner bases for differential operators with coefficients in a commutative
noetherian ring. It has been proved that the notion of Gröbner basis is a powerful tool to solve
various problems of linear partial differential equations.

On the other hand, for some problems of linear difference-differential equations such as the
dimension of the space of solutions and the computation of difference-differential dimension
polynomials, the notion of Gröbner basis for the ring of difference-differential operators is
essential. Gröbner bases in rings of differential operators are defined with respect to a term order
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Gröbner bases in difference-differential modules and difference-differential dimension polynomials 1733

on Nn×Nn or Nn. This approach cannot be used for the ring of difference-differential operators,
because for it we need to treat orders on Nm×Zn. Pauer and Unterkircher[8] considered Gröbner
bases in Laurent polynomial rings, but it is limited in commutative case. Levin[9] introduced a
characteristic set for free modules over rings of difference-differential operators. It is an analog
of “Gröbner basis” connected with a specific “ordering” on Nm × Zn. But the ordering is not
a term-ordering while the theory of Gröbner basis works for any term-ordering.

The concept of the differential dimension polynomial was introduced by Kolchin[10] as a
dimensional description of some differential field extension. Johnson[11] proved that the differ-
ential dimension polynomial of a differential field extension coincides with the Hilbert polyno-
mial of some filtered differential module. This result allowed to compute differential dimension
polynomials using the Gröbner basis technique. Since then various problems of differential al-
gebra involving differential dimension polynomials were studied (see [12, 13]). The concepts of
the difference dimension polynomial and the difference-differential dimension polynomial were
introduced first in [14, 15] respectively. They play the same role in difference algebra (resp.
difference-differential algebra) as Hilbert polynomials in commutative algebra or differential
dimension polynomials in differential algebra. The notion of difference-differential dimension
polynomial can be used for the study of dimension theory of difference-differential field extension
and of systems of algebraic difference-differential equations.

Mikhalev and Pankratev[15] proved existence of difference-differential dimension polynomials
φ(t) associated with a difference-differential module M by classical Gröbner basis methods of
computation of Hilbert polynomials. The proof is based on the fact that the ring of difference-
differential operators over the difference-differential field R is isomorphic to the factor ring of the
ring of generalized polynomials R[x1, . . . , xm+2n] (where xia = axi+δi(a) (1 6 i 6 m), xm+ja =
αj(a)xm+j and xm+n+ja = α−1

j (a)xm+n+j (1 6 j 6 n) for any a ∈ R) by the ideal I generated
by the polynomials xm+jxm+n+j − 1 (1 6 j 6 n). Wu[16] also computed dimensions of linear
difference-differential systems by the above approach. However, a similar approach to difference-
differential dimension polynomials in two variables is unsuccessful. Levin[9] investigated the
difference-differential dimension polynomials in two variables by the characteristic set approach.
The method of Levin is rather delicate but no general algorithm for computing the characteristic
set.

In this paper we present a new approach, difference-differential Gröbner basis, for algorith-
mic computing the difference-differential dimension polynomials. It is based on the algorithm
of computation of Gröbner basis for an ideal of (or a module over) the ring of difference-
differential operators. In Section 2 the generalized term order and its properties are discussed
and some examples are presented. In Section 3 we design carefully the reduction algorithm,
the definition of the Gröbner basis and the S-polynomials, as well as the Buchberger algorithm
for the computation of the Gröbner bases. In Section 4 we describe an approach to com-
puting difference-differential dimension polynomials associated with a module over the ring of
difference-differential operators via the Gröbner bases.

Throughout the paper Z, N, Z− and Q denotes the sets of all integers, all non-negative
integers, all non-positive integers, and all rational numbers, respectively. By a ring we always
mean an associative ring with a unit. By the module over a ring A we mean a unitary left



1734 ZHOU Meng & Franz WINKLER

A-module.

Definition 1.1. Let R be a commutative noetherian ring, ∆ = {δ1, . . . , δm} and σ =
{α1, . . . , αn} be set of derivations and automorphisms of the ring R, respectively, such that
β(x) ∈ R and β(γ(x)) = γ(β(x)) hold for any β, γ ∈ ∆ ∪ σ and x ∈ R. Then R is called a
difference-differential ring with the basic set of derivations ∆ and the basic set of automorphisms
σ, or shortly a ∆-σ-ring. If R is a field, then it is called a ∆-σ-field.

If R is a ∆-σ-ring, then Λ will denote the commutative semigroup of elements of the form

λ = δk1
1 · · · δkm

m αl1
1 · · ·αln

n , (1.1)

where (k1, . . . , km) ∈ Nm and (l1, . . . , ln) ∈ Zn. This semigroup contains the free commutative
semigroup Θ generated by the set ∆ and free commutative semigroup Γ generated by the set
σ. The subset {α1, . . . , αn, α−1

1 , . . . , α−1
n } of Λ will be denoted by σ∗.

Definition 1.2. Let R be a ∆-σ-ring and the semigroup Λ be as above. Then an expression
of the form ∑

λ∈Λ

aλλ, (1.2)

where aλ ∈ R for all λ ∈ Λ and only finitely many coefficients aλ are different from zero, is
called a difference-differential operator (or shortly a ∆-σ-operator) over R. Two ∆-σ-operators∑

λ∈Λ aλλ and
∑

λ∈Λ bλλ are equal if and only if aλ = bλ for all λ ∈ Λ.

The set of all ∆-σ-operators over a ∆-σ-ring R is a ring with the following fundamental
relations ∑

λ∈Λ

aλλ +
∑

λ∈Λ

bλλ =
∑

λ∈Λ

(aλ + bλ)λ, a

( ∑

λ∈Λ

aλλ

)
=

∑

λ∈Λ

(aaλ)λ,

( ∑

λ∈Λ

aλλ

)
µ =

∑

λ∈Λ

aλ(λµ), δa = aδ + δ(a), τa = τ(a)τ,
(1.3)

for all aλ, bλ ∈ R, λ, µ ∈ Λ, a ∈ R, δ ∈ ∆, τ ∈ σ∗. Note that the elements in ∆ and σ∗ do
not commute with the elements in R, and then the “terms” λ ∈ Λ do not commute with the
coefficients aλ ∈ R.

Definition 1.3. The ring of all ∆-σ-operators over a ∆-σ-ring R is called the ring of
difference-differential operators (or shortly the ring of ∆-σ-operators) over R, which will be
denoted by D. A left D-module M is called a difference-differential module (or a ∆-σ-module).
If M is finitely generated as a left D-module, then M is called a finitely generated ∆-σ-module.

When σ = ∅, D will be the rings of differential operators R[δ1, . . . , δm]. If the coefficient ring
R is the polynomial ring over a field K, then D will be Weyl algebra Am. So ∆-σ-module is a
generalization of module over rings of differential operators. But in the ring of ∆-σ-operators
the “terms” are the form (1.1) and the index in α1, . . . , αn is (l1, . . . , ln) ∈ Zn, the notion of
“term order”, as commonly used on Gröbner bases theory, is no longer valid. We generalize the
concept of term order in the following section.

2 Generalized term order on Nm × Zn

Note that Zn = Z × Z × · · · × Z is a group. We consider first some decomposition of Zn. For
instance, Z2 = {N × N} ∪ {N × Z−} ∪ {Z− × N} ∪ {Z− × Z−}. Then we may define a kind of
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“term order” along every one of the 4 directions. And then an algorithm based on the “term
order” may terminate after finite steps.

Definition 2.1. Let Zn be the union of finitely many subsets Z(n)
j : Zn =

⋃k
j=1 Z

(n)
j where

Z(n)
j , j = 1, . . . , k, satisfy the following conditions :
(i) (0, . . . , 0) ∈ Z(n)

j , and Z(n)
j does not contain any pair of invertible elements c = (c1, . . . , cn)

6= 0 and c−1 = (−c1, . . . ,−cn);
(ii) Z(n)

j is finitely generated sub-semigroup of Zn;
(iii) the group generated by Z(n)

j is Zn,

then {Z(n)
j , j = 1, . . . , k} is called an orthant decomposition of Zn and Z(n)

j is called the j-th
orthant of the decomposition.

Remark. The conditions in Def. 2.1 imply that we may define a smallest element in every
Z(n)

j , and that Z(n)
j has some similar structures as N(n).

Example 2.2. Let {Z(n)
1 , . . . ,Z(n)

2n } be all distinct Cartesian products of n sets each of which
is either N or Z−. Then it is an orthant decomposition of Zn. The set of generators of Z(n)

j

as a semigroup is {(c1, 0, . . . , 0), (0, c2, 0, . . . , 0), . . . , (0, . . . , 0, cn)}, where ci is either 1 or −1,
i = 1, . . . , n. We call this decomposition the canonical orthant decomposition of Zn.

Example 2.3. Let Z(n)
0 be the sub-semigroup of Zn generated by

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)},

and Z(n)
j be the sub-semigroup of Zn generated by

{(−1, . . . ,−1)} ∪ {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}\{(0, . . . , 0, 1︸ ︷︷ ︸
j

,0, . . . , 0)},

j =1, 2, . . . , n.

Then {Z(n)
0 ,Z(n)

1 , . . . ,Z(n)
n } is an orthant decomposition of Zn. For n = 2, we have

Z(n)
0 = {(a, b)|a > 0, b > 0, a, b ∈ Z},
Z(n)

1 = {(a, b)|a 6 0, b > a, a, b ∈ Z},
Z(n)

2 = {(a, b)|b 6 0, a > b, a, b ∈ Z}.

Definition 2.4. Let {Z(n)
j , j = 1, . . . , k} be an orthant decomposition of Zn. Then a =

(k1, . . . , km, l1, . . . , ln) and b = (r1, . . . , rm, s1, . . . , sn) of Nm × Zn are called similar elements,
if the n-tuples (l1, . . . , ln) and (s1, . . . , sn) are in the same orthant Z(n)

j of Zn. In this case we
also say a is similar to b.

Definition 2.5. Let {Z(n)
j , j = 1, . . . , k} be an orthant decomposition of Zn. A total order

“≺” on Nm×Zn is called a generalized term order on Nm×Zn with respect to the decomposition,
if the following conditions hold :

(i) (0, . . . , 0) is the smallest elements in Nm × Zn;
(ii) if a ≺ b, then for any c similar to b, a + c ≺ b + c, where a, b, c ∈ Nm × Zn.

Remark. Def. 2.5 (ii) means that in every orthant the order just is a usual term order.
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Example 2.6. Let {Z(n)
j , j = 1, . . . , 2n} be the canonical orthant decomposition of Zn defined

in Example 2.2. For every a = (k1, . . . , km, l1, . . . , ln) ∈ Nm × Zn let

|a| = k1 + · · ·+ km + |l1|+ · · ·+ |ln|.

For two elements a = (k1, . . . , km, l1, . . . , ln) and b = (r1, . . . , rm, s1, . . . , sn) of Nm × Zn

define a ≺ b if and only if the m + n + 1-tuple (|a|, k1, . . . , km, l1, . . . , ln) is smaller than
(|b|, r1, . . . , rm, s1, . . . , sn) relative to the lexicographic order on Nm+1 × Zn. Then “≺” is a
generalized term order on Nm × Zn.

In fact, obviously (0, . . . , 0) is the smallest elements in Nm × Zn. Now let a ≺ b and c be
similar to b. Then |a| 6 |b|. We have

|a + c| 6 |a|+ |c| 6 |b|+ |c| = |b + c|. (2.1)

The last equation holds because c is similar to b. If |a + c| < |b + c|, then a + c ≺ b + c. If
|a + c| = |b + c|, then |a| = |b| must hold by (2.1). So the m + n-tuple (k1, . . . , km, l1, . . . , ln)
is lexicographically smaller than (r1, . . . , rm, s1, . . . , sn). Then (k1 + u1, . . . , km + um, l1 +
v1, . . . , ln + vn) is lexicographically smaller than (r1 + u1, . . . , rm + um, s1 + v1, . . . , sn + vn) for
c = (u1, . . . , um, v1, . . . , vn) similar to b. In this case we also have a + c ≺ b + c.

Example 2.7. Let the orthant decomposition of Zn be as in Example 2.2. For every a =
(k1, . . . , km, l1, . . . , ln) ∈ Nm × Zn let |a|1 =

∑m
j=1 kj , |a|2 =

∑n
j=1 |lj |. For two elements a =

(k1, . . . , km, l1, . . . , ln) and b = (r1, . . . , rm, s1, . . . , sn) of Nm×Zn define a ≺ b if and only if the
m + 2n + 2-tuple (|a|1, |a|2, k1, . . . , km, |l1|, . . . , |ln|, l1, . . . , ln) is lexicographically smaller than
(|b|1, |b|2, r1, . . . , rm, |s1|, . . . , |sn|, s1, . . . , sn). Then “≺” is a generalized term order on Nm×Zn.

First, we note that it is obvious that (0, . . . , 0) is the smallest elements. Then, let a ≺ b and
c = (u1, . . . , um, v1, . . . , vn) be similar to b. Because |a|1 6 |b|1, so |a + c|1 6 |b + c|1. But
|a + c|1 < |b + c|1 would imply a + c ≺ b + c, we can suppose |a + c|1 = |b + c|1. This would
imply |a|1 = |b|1 and then |a|2 6 |b|2. A relation similar to (2.1) would give |a + c|2 6 |b + c|2.
In the “<” case a + c ≺ b + c would hold.

Now suppose |a + c|1 = |b + c|1, |a + c|2 = |b + c|2. Then |a|1 = |b|1, |a|2 = |b|2. Note that
for j = 1, . . . , n,

|lj + vj | 6 |lj |+ |vj | 6 |sj |+ |vj | = |sj + vj |.
So if (k1, . . . , km, |l1|, . . . , |ln|, l1, . . . , ln) is lexicographically smaller than (r1, . . . , rm, |s1|, . . . ,
|sn|, s1, . . . , sn), then a + c ≺ b + c.

Example 2.8. Let {Z(n)
j , j = 0, 1, . . . , n} be the orthant decomposition of Zn defined in

Example 2.3. For every a = (k1, . . . , km, l1, . . . , ln) ∈ Nm × Zn let ‖a‖ = −min{0, l1, . . . , ln}.
For two elements a = (k1, . . . , km, l1, . . . , ln) and b = (r1, . . . , rm, s1, . . . , sn) of Nm × Zn define
a ≺ b if and only if the m + n + 1-tuple (‖a‖, k1, . . . , km, l1, . . . , ln) is lexicographically smaller
than (‖b‖, r1, . . . , rm, s1, . . . , sn). Then “≺” is a generalized term order on Nm × Zn.

To prove this, note that Z(n)
j = {(i1, . . . , in) | ij 6 0; ik > ij , k 6= j}, j = 1, . . . , n. It would

imply min{i1, . . . , in} = ij when (i1, . . . , in) ∈ Z(n)
j . Then for any a, c ∈ Nm × Zn we have

‖a + c‖ 6 ‖a‖+ ‖c‖. Equality holds if and only if that a and c are similar elements. Then it is
clear that the “≺” is a generalized term order on Nm×Zn following the way as in Example 2.6.
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In order to investigate ∆-σ-modules, we extend the notion of generalized term order to
Nm × Zn × E, where E = {e1, . . . , eq} is a set of generators of a module.

Definition 2.9. Let {Z(n)
j , j = 1, . . . , k} be an orthant decomposition of Zn. Let E =

{e1, . . . , eq} be a set of q distinct elements. A total order ≺ on Nm × Zn × E is called a
generalized term order on Nm × Zn × E with respect to the decomposition, if the following
conditions hold :

(i) (0, . . . , 0, ei) is the smallest element in Nm × Zn × {ei}, ei ∈ E;
(ii) if (a, ei) ≺ (b, ej), then for any c similar to b, (a + c, ei) ≺ (b + c, ej), where a, b, c ∈

Nm × Zn, ei, ej ∈ E.

There are many ways to extend a generalized term order on Nm × Zn to Nm × Zn × E. Of
course such an extended term order may also be defined directly. Some typical examples are
shown below.

Example 2.10. Let the orthant decomposition of Zn and the generalized term order “≺”
on Nm × Zn be as in Example 2.7. Given a order “≺′” in E = {e1, . . . , eq}, for two elements
(a, ei) = (k1, . . . , km, l1, . . . , ln, ei) and (b, ej) = (r1, . . . , rm, s1, . . . , sn, ej) of Nm×Zn×E define

(a, ei) ≺1 (b, ej) ⇐⇒a ≺ b or (a = b and ei ≺′ ej);

(a, ei) ≺2 (b, ej) ⇐⇒ei ≺′ ej or (ei = ej and a ≺ b);

(a, ei) ≺3 (b, ej) ⇐⇒(|a|1, |a|2, ei, k1, . . . , km, |l1|, . . . , |ln|, l1, . . . , ln)

< (|b|1, |b|2, ej , r1, . . . , rm, |s1|, . . . , |sn|, s1, . . . , sn) in lexicographic order.

Then “≺1”, “≺2”, “≺3” are all generalized term order on Nm × Zn × E.
“≺1” is called TOP extension of “≺” and “≺2” is called POT extension of “≺”. “≺3” is a

generalized term order defined directly.

Lemma 2.11. Let {Z(n)
j , j = 1, . . . , k} be an orthant decomposition of Zn and “≺” be a

generalized term order on Nm × Zn with respect to the orthant decomposition. Suppose every
orthant Z(n)

j is isomorphic to Nn as a semigroup. Then every strictly descending sequence in
Nm × Zn is finite. In particular, any subset of Nm × Zn contains a smallest element.

Proof. Let a1 Â a2 Â a3 Â · · · be a strictly descending sequence in Nm × Zn. Since there
are finitely many orthants, without loss of generality we may assume that all aj are similar
elements which are in Nm × Z(n)

i for a fixed i. By the condition of the Lemma, Nm × Z(n)
i is

isomorphic to Nm+n as a semigroup. Define order ≺1 on Nm+n as a ≺1 b ⇐⇒ f−1(a) ≺ f−1(b),
where f is the isomorphic map from Nm × Z(n)

i to Nm+n and ≺ is the generalized term order
on Nm×Zn. Since ≺ is a term order on Nm×Z(n)

i , it follows that ≺1 is a term order on Nm+n.
Then the assertion of the Lemma follows from the well-order property of term order on Nm+n.

Remark. In Lemma 2.11 the condition “every orthant Z(n)
j is isomorphic to Nn as a semi-

group” is necessary. From Definition 2.1 we can not deduce the condition. Also, there are
counterexamples illustrate that the Lemma can not holds without the condition.

Lemma 2.11 means that an algorithm based on a generalized term order on Nm × Zn may
terminate after finite steps. To deal with difference-differential modules we have following
corollary.
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Corollary 2.12. Given an orthant decomposition of Zn and a generalized term order “≺”
on Nm × Zn × E, every strictly descending sequence in Nm × Zn × E is finite. In particular,
any subset of Nm × Zn × E contains a smallest element.

Proof. Let a1 Â a2 Â a3 Â · · · be a strictly descending sequence in Nm × Zn × E. Since E
is a finite set, we may suppose that all aj are in Nm × Zn × {ei} for an i. Then Lemma 2.11
shows that the conclusion holds.

3 Gröbner bases in finitely generated difference-differential-modules

In classical Gröbner basis theory, the concept of reduction of polynomials is essential. To de-
scribe reduction in a difference-differential-module, we first investigate some basic multiplication
and division properties in the module.

Let {Z(n)
j , j = 1, . . . , k} be an orthant decomposition of Zn and “≺” be a generalized term

order on Nm×Zn with respect to the orthant decomposition. Let Λ be the semi-group introduced
in Section 1 in which the elements are of the form (1.1). Since Λ is isomorphic to Nm×Zn as a
semigroup, the “≺” would define an order on Λ. We also call it a generalized term order on Λ.

Let K be a ∆-σ-field and D be the ring of ∆-σ-operators over K, and let F be a finitely
generated free D-module (i.e. a finitely generated free difference-differential-module) with a set
of free generators E = {e1, . . . , eq}. Then F can be considered as a K-vector space generated
by the set of all elements of the form λei (i = 1, . . . , q, where λ ∈ Λ). This set will be denoted
by ΛE and its elements will be called “terms” of F . In particular the elements of Λ will be
called “terms” of D. If “≺” is a generalized term order on Nm×Zn×B then “≺” would define
a generalized term order on ΛE.

It is clear that every element f ∈ F has a unique representation as a linear combination of
terms:

f = a1λ1ej1 + · · ·+ adλdejd
(3.1)

for some nonzero elements ai ∈ R (i = 1, . . . , d) and some distinct elements λ1ej1 , . . . , λdejd
∈

ΛE.

If a term λej appears in the form (3.1) of f , then it is called a term of f . If (k1, . . . , km, l1, . . . ,

ln) and (r1, . . . , rm, s1, . . . , sn) are similar elements in Nm × Zn then the two terms λ1 =
δk1
1 · · · δkm

m αl1
1 · · ·αln

n and λ2 = δr1
1 · · · δrm

m αs1
1 · · ·αsn

n of D are called similar. If λ1,λ2 ∈ Λ are
similar, then the two terms u = λ1ei,v = λ2ej ∈ ΛE are called similar.

Definition 3.1. Let “ ≺ ” be a generalized term order on ΛE, f ∈ F be of the form (3.1).
Then lt(f) = max≺{λieji

|i = 1, . . . , d} is called the leading term of f . If λieji
= lt(f), then

lc(f) = ai is called the leading coefficient of f .

Note that in the case of that “≺” is a generalized term order, in general the equation λlt(f) =
lt(λf) is not true unless the leading term lt(f) = ηei of f is such that η is similar to λ.

Now we are going to construct the division algorithm in the difference-differential module
F . First we give some lemmas to describe the multiple properties in difference-differential
modules. In what follows we always assume that an orthant decomposition of Zn is given and
a generalized term order is with respect to the decomposition.
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Definition 3.2. Let λ be the form of (1.1). Then the subset Λj of Λ,

Λj = {λ = δk1
1 · · · δkm

m αl1
1 · · ·αln

n |(l1, . . . , ln) ∈ Z(n)
j },

where Z(n)
j is the j-th orthant of the decomposition of Zn, is called j-th orthant of Λ. Let F

be a finitely generated free D-module and ΛE be the set of terms of F . Then ΛjE = {λei|λ ∈
Λj , ei ∈ E} is called j-th orthant of ΛE.

Obviously, two elements in Λ or ΛE are similar if and only if they are in same orthant. So
from Def. 2.5, if “≺” is a generalized term order on Λ and ξ ≺ λ, then ηξ ≺ ηλ holds for any η

in the same orthant as λ.

Lemma 3.3. Let λ ∈ Λ and a ∈ K, “≺” be a generalized term order on Λ ⊆ D. Then
λa = a′λ + ξ, where a′ = α(a) for some α ∈ Γ (see (1.1)), and if a 6= 0 then a′ 6= 0; ξ ∈ D with
lt(ξ) ≺ λ and all terms of ξ are similar to λ.

Proof. Let λ = δk1
1 · · · δkm

m αl1
1 · · ·αln

n as (1.1). Denote αl1
1 · · ·αln

n by α. Then by the funda-
mental relations (1.3) we have

λa = δk1
1 · · · δkm

m α(a)α = δk1
1 · · · δkm

m a′α = (a′δk1
1 · · · δkm

m + η)α = a′δk1
1 · · · δkm

m α + ηα,

where η ∈ R[∆], a′ = α(a). Because αj ∈ σ, j = 1, . . . , n, are invertible, we have a′ 6= 0 if
a 6= 0.

If lt(η) = δ
k′1
1 · · · δk′m

m , then it is obvious that (k1, . . . , km) ∈ {(k′1, . . . , k′m) + Nm} from (1.3).
This means that lt(η) ≺ δk1

1 · · · δkm
m . Furthermore, since δα and ηα are always similar for α in

σ and δ, η in ∆, we see that all terms of ξ = ηα are similar to λ. Since δk1
1 · · · δkm

m is in every
orthant of Λ, it follows that lt(ξ) = lt(ηα) ≺ δk1

1 · · · δkm
m α = λ.

In general lt(λf) = λlt(f) is not true. But we have the following

Lemma 3.4. Let F be a finitely generated free D-module and 0 6= f ∈ F . Then the following
assertions hold :

(i) If λ ∈ Λ, then lt(λf) = max≺{λui} where ui are terms of f and then lt(λf) = λu for a
unique term u of f .

(ii) If lt(f) ∈ Λje then for any λ ∈ Λj, lt(λf) = λlt(f) ∈ ΛjE.

Proof. (i) Suppose that f =
∑d

i=1 aiλieji
as (3.1) and λ ∈ Λ, then by Lemma 3.3 we have

λf =
d∑

i=1

λaiλieji =
d∑

i=1

(a′iλ + ξi)λieji , (3.2)

where ξi ∈ D with lt(ξi) ≺ λ. Note that ξi = ηiα in the proof of Lemma 3.3, where ηi ∈ R[∆],
α ∈ Γ. So every term of ξi is the form of σiα with σi ∈ Θ (see (1.1)) and α = αl1

1 · · ·αln
n such

that λ = δk1
1 · · · δkm

m αl1
1 · · ·αln

n as in the proof of Lemma 3.3. It follows that

σiαλieji ≺ δk1
1 · · · δkm

m αλieji = λλieji . (3.3)

So lt(λf) ∈ {λλieji
}. If λλieji

= λλ′ie
′
ji

then eji
= e′ji

and λi = λ′i. Therefore lt(λf) =
max≺{λλieji |i = 1, . . . , d} = λu for a unique term u of f .
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(ii) Suppose that f is as above and lt(f) = λ1ej1 ∈ ΛjE. If λ ∈ Λj , then in (3.2) we have
λieji ≺ λ1ej1 . Then λ similar to λ1 implies

λλieji ≺ λλ1ej1 . (3.4)

From (3.3) and (3.4) we conclude that lt(λf) = λlt(f) ∈ ΛjE.

Lemma 3.5. Let F be a finitely generated free D-module and 0 6= f ∈ F . Then for each j,
there exists some λ ∈ Λ and a term uj of f such that lt(λf) = λuj ∈ ΛjE. Furthermore, the
term uj of f is unique: if lt(λ1f) = λ1uj1 ∈ ΛjE and lt(λ2f) = λ2uj2 ∈ ΛjE then uj1 = uj2 .
We will write ltj(f) for this term uj.

Proof. Let f be the form of (3.1) and then {λieji
|i = 1, . . . , d} be the set of terms of f .

Let λi = δsiαti , si ∈ Nm and ti ∈ Zn. By Def. 2.1 (iii), the group generated by Z(n)
j is Zn.

Therefore there exist ui, vi ∈ Z(n)
j such that ui−vi = ti. This means that αviλi = δsiαui ∈ Λj .

Put ζi = αvi and λ =
∏d

i=1 ζi, then λ · λi ∈ Λj holds for all i = 1, . . . , d. Now we have

λf =
d∑

i=1

λaiλieji
=

d∑

i=1

(a′iλ + ξi)λieji

from Lemma 3.3. Because there is no δ factor in λ, ξi = 0 from the proof of Lemma 3.3. Then
all terms of λf are in ΛjE and lt(λf) ∈ ΛjE.

Now suppose that there are terms u, v of f such that lt(λf) = λu ∈ ΛjE, lt(ηf) = ηv ∈ ΛjE.
For λ, η ∈ Λ the above proof shows that there is ζ ∈ Λj such that ζλ, ζη ∈ Λj . Since
λv ¹ λu, ηu ¹ ηv then ζλv ¹ ζλu, ζηu ≺ ζηv because ζ ∈ Λj . Furthermore, this would imply
(ζη)ζλv ¹ (ζη)ζλu, (ζλ)ζηu ¹ (ζλ)ζηv because ζλ, ζη ∈ Λj . Then ζηζλv = ζηζλu and then
u = v.

Denote the term u = v of f by ltj(f), then for any λ ∈ Λ such that lt(λf) ∈ ΛjE, lt(λf) =
λltj(f).

Remark. Lemma 3.5 asserts that, either λ ∈ Λj or λ /∈ Λj , we have lt(λf) = λltj(f) for a
unique u = ltj(f) as long as lt(λf) ∈ ΛjE.

For instance, let f = α−2
1 α3

2 + α5
1α
−2
2 (the generalized term order as in Example 2.6 and

α1, α2 ∈ σ). λ = α−1
1 α2 ∈ Λ2, η = α−3

1 α−1
2 ∈ Λ3. Then λf = α−3

1 α4
2 + α4

1α
−1
2 , ηf =

α−5
1 α2

2 + α2
1α
−3
2 and lt(λf) = α−3

1 α4
2 ∈ Λ2 = λα−2

1 α3
2, lt(ηf) = α−5

1 α2
2 ∈ Λ2 = ηα−2

1 α3
2. Then

lt2(f) = α−2
1 α3

2. Note that lt(f) = α5
1α
−2
2 6= lt2(f).

If h =
∑

i∈I biλi ∈ D, f =
∑

j∈J cjuj ∈ F , then hf =
∑

i∈I,j∈J bicjλiuj . Since some of λiuj

may be equal and vanish in terms of hf , it would be problematic if lt(hf) ≺ λiuj might occur
for some λi and uj . The following proposition asserts that this undesirable situation cannot
occur.

Proposition 3.6. Let 0 6= f ∈ F , 0 6= h ∈ D. Then lt(hf) = max≺{λiuk} where λi are
terms of h and uk are terms of f . Therefore lt(hf) = λu for a unique term λ of h and a unique
term u of f .

Proof. Let h =
∑

i∈I biλi where I is a finite set and λi, i ∈ I, are distinct elements in
Λ. Then hf =

∑
i∈I biλif. By Lemma 3.4 (i), there is a unique term uki

of f such that
lt(λif) = λiuki º λiuk for all terms uk of f . Also we have that lt(λif) = λiuki , i ∈ I, are
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distinct: if lt(λi1f) = lt(λi2f) then they must be in a same ΛjE. It follows from Lemma 3.5
that there is a unique term ltj(f) of f such that

lt(λi1f) = λi1 ltj(f) = lt(λi2f) = λi2 ltj(f) ∈ ΛjE.

Therefore λi1 = λi2 . Since λi, i ∈ I are distinct, this is impossible. So we have lt(hf) ∈
{λiuki

}i∈I = {lt(λif)}i∈I . This means that there is a unique i0 such that

lt(hf) = lt(λi0f) = λi0uki0
º λiuk (3.5)

for all terms λi of h and all terms uk of f .

Theorem 3.7. Let f1, . . . , fp ∈ F\{0}. Then every g ∈ F can be represented as

g = h1f1 + · · ·+ hpfp + r (3.6)

for some elements h1, . . . , hp ∈ D and r ∈ F such that
(i) hi = 0 or lt(hifi) ¹ lt(g), i = 1, . . . , p; (By Proposition 3.1 this means that λu ¹ lt(g) for

all terms λ of hi and all terms u of fi.)
(ii) r = 0 or lt(r) ¹ lt(g) such that lt(r) /∈ {lt(λfi)|λ ∈ Λ, i = 1, . . . , p}.

Proof. The elements h1, . . . , hp ∈ D and r ∈ F can be computed as follows:
First set r = g and hi = 0, i = 1, . . . , p.
Suppose r 6= 0, i.e. r = lc(r)lt(r)+ r′ and lt(r) = lt(λifi) for some fi and an element λi ∈ Λ.

Then λifi = cilt(λifi) + ξi, where ci = lc(λifi) and lt(ξi) ≺ lt(λifi). Therefore

r = lc(r)lt(r) + r′ = lc(r)lt(λifi) + r′ =
lc(r)
ci

(λifi − ξi) + r′.

Put bi = lc(r)
ci

and ri = lc(r)
ci

(−ξi) + r′. Then r = biλifi + ri. Now we may replace r by ri and
hi by hi + biλi. Since in each step we have lt(ri) ≺ lt(λifi) ¹ lt(r) ¹ lt(g), by Corollary 2.12,
the algorithm above terminates after finitely many iterations.

Remark. Since ηlt(λifi) = lt(ηλifi) = lt(λ′ifi) for any η similar to lt(λifi) from Lemma
3.4(ii), the condition (ii) in Theorem 3.7 means that r = 0 or lt(r) ¹ lt(g) such that lt(r) is not
in Λj lt(λifi) if lt(λifi) ∈ ΛjE.

Definition 3.8. Let f1, . . . , fp ∈ F\{0}, g ∈ F . Suppose that the equality (3.6) holds and the
conditions (i), (ii) in Theorem 3.7 are satisfied. If r 6= g we say g can be reduced by {f1, . . . , fp}
to r. In this case we have lt(r) ≺ lt(g) by the proof of Theorem 3.7. In the case of r = g and
hi = 0, i = 1, . . . , p, we say that g is reduced with respect to {f1, . . . , fp}.

The following example illustrates the reason for the condition (ii) in Theorem 3.7.

Example 3.9. Let K = Q(x1, x2), D = K[δ1, δ2, α, α−1], where δ1, δ2 are the partial deriva-
tive by x1, x2 respectively, and α is an automorphism of K. Choose generalized term order on
N2 × Z as in Example 2.6, i.e.

u = δk1
1 δk2

2 αl ≺ v = δr1
1 δr2

2 αs ⇐⇒ (|u|, k1, k2, l) < (|v|, r1, r2, s) in lexicographic order,

where |u| = k1 + k2 + |l|.
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Let g = δ1α
−2 + δ2α

2, f = δ1α
−1 + α. Then

g = δ1α
−2 + δ2α

2 = α−1(δ1α
−1 + α) + (δ2α

2 − 1) = α−1f + r1.

Although lt(r1) = δ2α
2 is not any multiple of lt(f) = δ1α

−1, we can find λ = δ2α such that
lt(r1) = lt(λf) = lt(δ1δ2 + δ2α

2). Therefore

g = α−1f + δ2αf + (−δ1δ2 − 1) = (α−1 + δ2α)f + r2.

Now r2 satisfies the condition (ii) in Theorem 3.7. Then g is reduced by f to r2.
The concept of classical Gröbner bases in commutative polynomial algebra can be defined in

several ways. The essential point is: G is a Gröbner basis of W if every f ∈ W can be reduced
to 0 by G. This means that lt(f) = λlt(gj) = lt(λgj) for some gj ∈ G. We can go along this
way to define difference-differential Gröbner bases.

Definition 3.10. Let W be a submodule of the finitely generated free D-module F and ≺ be
a generalized term order on ΛE. G = {g1, . . . , gp} ∈ W\{0}. Then G is called a Gröbner basis
of W (with respect to the generalized term order ≺) if for any f ∈ W\{0}, lt(f) = lt(λgi) for
some λ ∈ Λ, gi ∈ G. If every element of G is reduced with respect to other element of G, then
G is called a reduced Gröbner basis of W .

Remark. Using ltj(g) which is introduced in Lemma 3.5, Definition 3.10 is equivalent to:
G is a Gröbner basis of W iff for any f ∈ W\{0}, if lt(f) ∈ ΛjE, then lt(f) = λltj(gi) for
some λ ∈ Λ, gi ∈ G. (Note that λltj(gi) = lt(λgi) by Lemma 3.5. We see that the style of
Definition 3.10 is simple and clear.)

Proposition 3.11. Let G be a finite subset of W\{0}. The following assertions hold :
(i) G is a Gröbner basis of W if and only if every f ∈ W can be reduced by G to 0. So a

Gröbner basis of W generates the D-module W .
(ii) If G is a Gröbner basis of W , f ∈ F , then f ∈ W if and only if f can be reduced by G

to 0.
(iii) If G is a Gröbner basis of W , then f ∈ W is reduced with respect to G if and only if

f = 0.

Proof. (i) If G is a Gröbner basis of W , f ∈ W , then from Theorem 3.7 f can be reduced
by G to r with lt(r) does not equal any lt(λg), λ ∈ Λ, g ∈ G. If r 6= 0 then r ∈ W , therefore
lt(r) = lt(λg) for some g ∈ G and some λ ∈ Λ,which is a contradiction.

If every f ∈ W can be reduced by G to 0, then f =
∑

g∈G hgg. By Proposition 3.6, there is
a g ∈ G such that lt(f) = maxg∈G{lt(hgg)} = λu for a term λ of hg and a term u of g. Then
lt(f) = lt(λg). By Definition 3.10, G is a Gröbner basis of W .

(ii) and (iii) follow easily from Theorem 3.7 and Definition 3.10.

Example 3.12. If W is generated by just one element g ∈ F\{0}, then any finite subset G

of W\{0} containing g is a Gröbner basis of W . In fact, 0 6= f ∈ W implies f = hg for some
h ∈ D\{0}. By Proposition 3.6, lt(f) = λu = max≺{λiuk} for a term λ of h and a term u of
g. Then lt(f) = lt(λg). By Definition 3.10, G is a Gröbner basis of W .

Below we will consider the Buchberger’s algorithm for computing a Gröbner basis of a sub-
module W of F . This requires a suitable definition of the concept of S-polynomial. Since there
are many orthants we have to compute S-polynomials in every orthant.
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Definition 3.13. Let F be a finitely generated free D-module and f, g ∈ F\{0}. For
every Λj let V (j, f, g) be a finite system of generators (which are terms) of the K[Λj ]-module

K[Λj ]〈lt(λf) ∈ ΛjE|λ ∈ Λ〉⋂K[Λj ]
〈lt(ηg) ∈ ΛjE|η ∈ Λ〉. Then for every generator v ∈ V (j, f, g)

S(j, f, g, v) =
v

ltj(f)
f

llcj(f)
− v

ltj(g)
g

lcj(g)

is called an S-polynomial of f and g with respect to j and v.

The K[Λj ]-module considered in Definition 3.13 is a “monomial module”, i.e. it is generated
by elements containing only one term. Such a module always has a finite “monomial basis”,
i.e. every basis element contains only one term. In the following we assume that V (j, f, g) is
such a finite monomial basis.

The computation of V (j, f, g) is involved in the generalized term order on ΛE. Pauer and
Unterkircher[8] researched V (j, f, g) in commutative Laurent polynomial rings and gave algo-
rithm for some important cases. Their results are still valid for difference-differential modules.

Example 3.14. Let F = D = K[δ1, δ2, α1, α
−1
1 , α2, α

−1
2 ] and K = Q(x1, x2). Where δ1,

δ2 are the partial derivative by x1, x2 respectively, and α1, α2 are two automorphism on K.
Choose the generalized term order on N2 × Z2 as in Example 2.8, i.e.

u = δk1
1 δk2

2 αl1
1 αl2

2 ≺ v = δr1
1 δr2

2 αs1
1 αs2

2

⇐⇒ (‖u‖, k1, k2, l1, l2) < (‖v‖, r1, r2, s1, s2) in lexicographic order,

where ‖u‖ = −min(0, l1, l2).
Let f = α−2

1 − δ2, g = δ1 + α4
2. Note that the orthants of Λ are Λ0,Λ1,Λ2 described in

Example 2.3 for n = 2. Then we obtain that

{λ ∈ Λ|lt(λf) ∈ Λ0} = Λ0α
2
1, {η ∈ Λ|lt(ηg) ∈ Λ0} = Λ0;

and
{lt(λf) ∈ Λ0|λ ∈ Λ} = Λ0δ2α

2
1, {lt(ηg) ∈ Λ0|η ∈ Λ} = Λ0δ1.

Therefore V (0, f, g) = {v0} = {δ1δ2α
2
1} and by Definition 3.13,

S(0, f, g, v0) = δ1α
2
1f + δ2α

2
1g = δ1 + δ2α

2
1α

4
2.

Similarly we have

{λ ∈ Λ|lt(λf) ∈ Λ1} = Λ1α1, {η ∈ Λ|lt(ηg) ∈ Λ1} = Λ1;

{lt(λf) ∈ Λ1 | λ ∈ Λ} = Λ1α
−1
1 , {lt(ηg) ∈ Λ1|η ∈ Λ} = Λ1δ1.

So V (1, f, g) = {v1} = {δ1α
−1
1 } and S(1, f, g, v1) = δ1α1f − α−1

1 g = −δ1δ2α1 − α−1
1 α4

2. Finally,

{λ ∈ Λ|lt(λf) ∈ Λ2} = Λ2α
2
1, {η ∈ Λ|lt(ηg) ∈ Λ2} = Λ2;

{lt(λf) ∈ Λ2|λ ∈ Λ} = Λ2δ2α
2
1, {lt(ηg) ∈ Λ2|η ∈ Λ} = Λ2δ1.

So V (2, f, g) = {v2} = {δ1δ2α
2
1} and S(2, f, g, v2) = δ1α

2
1f + δ2α

2
1g = δ1 + δ2α

2
1α

4
2.

For the proof of Theorem 3.17 we need the following lemmas:
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Lemma 3.15. Let {r1, . . . , rl} ⊆ F and {a1, . . . , al} ⊆ K. If
∑l

j=1 aj = 0, then
∑l

j=1 ajrj =∑l−1
j=1 bj(rj − rj+1) for some bj ∈ K.

Proof. Obviously

l∑

j=1

ajrj = a1(r1 − r2) + (a1 + a2)(r2 − r3) + (a1 + a2 + a3)(r3 − r4)

+ · · ·+ (a1 + a2 + · · ·+ al−1)(rl−1 − rl) + (a1 + a2 + · · ·+ al)rl.

Since a1 + a2 + · · ·+ al = 0 it follows that
∑l

j=1 ajrj =
∑l−1

j=1 bj(rj − rj+1) for some bj ∈ K.

Lemma 3.16. Let gi, gk ∈ F and lt(λgi) = lt(ηgk) = u ∈ ΛjE, where λ, η ∈ Λ. Then there
exist ζ ∈ Λj and v ∈ V (j, gi, gk) defined in Definition 3.13, such that u = ζv. Furthermore, if
G is a finite subset of F\{0} and the S-polynomials S(j, gi, gk, v) can be reduced to 0 by G then

ζS(j, gi, gk, v) =
u

ltj(gi)
gi

lcj(gi)
− u

ltj(gk)
gk

lcj(gk)
=

∑

g∈G

hgg

with lt(hgg) ≺ u for g ∈ G.

Proof. Suppose V (j, gi, gk) = {v1, . . . , vl}. Then u =
∑

µ pµvµ, where pµ ∈ K[Λj ]. Since
pµ =

∑
ν aµνλµν , where aµν ∈ R and λµν ∈ Λj , it follows that u =

∑
µ,ν aµν(λµνvµ).

Note that u and λµνvµ are terms in ΛjE and we can rewrite the right of the equation such
that the terms λµνvµ are distinct. Then we see that there is a unique aµν = 1 and others are
zero. Then u = ζv for a ζ ∈ Λj and v ∈ V (j, gi, gk).

Now if S(j, gi, gk, v) can be reduced to 0 by G then S(j, gi, gk, v) =
∑

g∈G h′gg and lt(h′gg) ¹
lt(S(j, gi, gk, v)) ≺ v for g ∈ G. Therefore ζS(j, gi, gk, v) =

∑
g∈G(ζh′g)g =

∑
g∈G hgg, where

hg = ζh′g. By Lemma 3.4 (i), lt(ζh′gg) = ζw for a term w of h′gg. Then lt(hgg) = lt(ζh′gg) = ζw.
Therefore w ¹ lt(h′gg) ≺ v and ζ ∈ Λj imply that ζw ≺ ζv = u.

Theorem 3.17 (Generalized Buchberger Theorem). Let F be a free D-module and ≺ be a
generalized term order on ΛE, G be a finite subset of F\{0} and W be the submodule in F

generated by G. Then G is a Gröbner basis of W if and only if for all Λj, for all gi, gk ∈ G

and for all v ∈ V (j, gi, gk), the S-polynomials S(j, gi, gk, v) can be reduced to 0 by G.

Proof. If G is a Gröbner basis of W , since S(j, gi, gk, v) is an element of W , then it follows
from Proposition 3.11 that S(j, gi, gk, v) can be reduced to 0 by G.

Now let G be a finite subset of F\{0} and W be the submodule in F generated by G. Suppose
that for all Λj , for all v ∈ V (j, gi, gk) and for all gi, gk ∈ G, the S-polynomials S(j, gi, gk, v)
can be reduced to 0 by G. It suffices to show that for any f ∈ W\{0}, there are λ ∈ Λ, g ∈ G

such that lt(f) = lt(λg).
Since W is generated by G, we have f =

∑
g∈G hgg for some {hg}g∈G ⊆ D.

Let u = max≺{lt(hgg)|g ∈ G}. We may choose the family {hg|g ∈ G} such that u is minimal,
i.e. if f =

∑
g∈G h′gg then u ¹ max≺{lt(h′gg)|g ∈ G}. Note that u º λg for all terms λ of hg

and all g ∈ G by Proposition 3.6.
If lt(f) = u = lt(hgg) for some g ∈ G, then it is follows from (3.5) that there is a term λ

of hg such that lt(f) = lt(λg). Therefore the proof would be completed. Hence it remains to
show that lt(f) ≺ u cannot hold.
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Suppose lt(f) ≺ u and let B = {g|lt(hgg) = u Â lt(f)}. Then by (3.5) in the proof of
Proposition 3.6, there is a unique term λg of hg, g ∈ B, such that u = lt(λgg) Â lt(ηgg) for any
terms ηg 6= λg of hg. Let cg be the coefficient of hg at λg. We have

f =
∑

g∈B

hgg +
∑

g/∈B

hgg =
∑

g∈B

cgλgg +
∑

g∈B

(hg − cgλg)g +
∑

g/∈B

hgg, (3.7)

where all terms appearing in the last two sums are ≺ u.
From Lemma 3.4 (i), suppose vg is the term of g such that u = lt(λgg) = λgvg Â λgv for any

terms v 6= vg of g. Let dg be the coefficient of g at vg. Then by Lemma 3.3,

∑

g∈B

cgλgg =
∑

g∈B

cgλgdg

(
g

dg

)
=

∑

g∈B

cg(d′gλg + ξg)
(

g

dg

)

=
∑

g∈B

cgd
′
gλg

(
g

dg

)
+

∑

g∈B

cgξg

(
g

dg

)
(3.8)

for some elements d′g ∈ K and ξg ∈ D where all terms appearing in the last sum are ≺ u.
Note that u appears only in

∑

g∈B

cgd
′
gλg

(
g

dg

)
=

∑

g∈B

cgd
′
gλgvg +

∑

g∈B

cgd
′
gλg

(
g

dg
− vg

)

=
( ∑

g∈B

cgd
′
g

)
u +

∑

g∈B

cgd
′
gλg

(
g

dg
− vg

)

and all terms appearing in the last sum are ≺ u. Since lt(f) ≺ u it follows that
∑

g∈B cgd
′
g = 0.

Denote λg( g
dg

) by rg, then by Lemma 3.15,

∑

g∈B

cgd
′
gλg

(
g

dg

)
=

∑

g∈B

(cgd
′
g)rg =

∑

i,k

bi,k(rgi
− rgk

) (3.9)

for some gi, gk ∈ B.
Since rgi − rgk

= λgi(
gi

dgi
)− λgk

( gk

dgk
) and λgivgi = λgk

vgk
= u ∈ ΛjE for some Λj , it follows

from Lemma 3.14 that vgi
= ltj(gi), vgk

= ltj(gk), dgi
= lcj(gi), dgk

= lcj(gk), λgi
= u

ltj(gi)
,

λgk
= u

ltj(gk) and then

rgi
− rgk

=
u

ltj(gi)
gi

lcj(gi)
− u

ltk(gk)
gk

lcj(gk)

with lt(rgi
− rgk

) ≺ u.
Note that for all Λj , for all v ∈ and for all gi, gk ∈ G, the S-polynomials S(j, gi, gk, v) can

be reduced to 0 by G. Then by Lemma 3.16, we have

rgi
− rgk

=
∑

g∈G

pgg (3.10)

with lt(pgg) ≺ u.
Replace the first sum in the right side of (3.7) by (3.8), and replace the first sum in the r.h.s

of (3.8) by (3.9), then substitute rgi
− rgk

in the r.h.s of (3.9) by (3.10), we get another form of
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f =
∑

g∈G h′gg and u Â max≺{lt(h′gg)|g ∈ G}, which is a contradiction to the minimality of u.
This completes the proof of the theorem.

Example 3.18. If W is a submodule of F generated by a finite set G and every g ∈ G

consists of only one term, then G is a Gröbner basis of W . In fact in this case all S-polynomials
S(j, gi, gk, v) are 0. By Theorem 3.17 this implies that G is a Gröbner basis of W .

Theorem 3.19 (Buchberger’s Algorithm). Let F be a free D-module and ≺ be a generalized
term order on ΛE, G be a finite subset of F\{0} and W be the submodule in F generated by
G. For each Λj and f, g ∈ F\{0} let V (j, f, g) and S(j, f, g, v) be as in Definition 3.13. Then
by the following algorithm a Gröbner basis of W can be computed :

Input: G = {g1, . . . , gµ} which is a set of generators of W ;
output: G′ = {g′1, . . . , g′ν} which is a Gröbner basis of W ;
Begin
G0 := G;
While there exist f, g ∈ Gi and v ∈ V (j, f, g) such that S(j, f, g, v) reduced to r 6= 0 by Gi,

Do Gi+1 := Gi ∪ {r};
End

Proof. By Theorem 3.17 we only have to show that there is an i ∈ N such that Gi+1 = Gi.
Suppose there is no such i ∈ N. Then we have an infinite chain of sets G1 ( G2 ( · · · ( Gi (
· · · . Since there is a finite number of orthans Λj , j = 1, . . . , n, we may assume that lt(r) ∈ ΛjE

in every Gi+1 for a fixed j. Note that in every step of the algorithm we get r such that lt(r) does
not equal any lt(λg), λ ∈ Λ, g ∈ Gi. Also we have ηlt(λg) = lt(ηλg) = lt(λ′g) ∈ ΛjE for any
η ∈ Λj and any lt(λg) ∈ ΛjE by Lemma 3.4 (ii). So if lt(r) ∈ ΛjE then K

(i)
j =K[Λj ] 〈lt(λg) ∈

ΛjE|λ ∈ Λ, g ∈ Gi〉 ( K
(i+1)
j =K[Λj ] 〈lt(λg) ∈ ΛjE|λ ∈ Λ, g ∈ Gi+1〉 as K[Λj ]-submodule of⊕

e∈E K[Λj ]e. Therefore for all i ∈ N there is m ∈ N such that K
(i)
j ( K

(i+m)
j . Since K[Λj ] is

noetherian, this is not possible.

Example 3.20. Let F and the generalized term order on Λ as in Example 3.14. Let G =
{g1, g2, g3} and g1 = α4

2 +1, g2 = α2
1− 1, g3 = α2

1α
4
2 +1. Then G is a Gröbner basis of W which

is generated by G. To prove this, we show all S-polynomials of G reduced to 0 by G.
Following the method described in Example 3.14, we have

V (0, g1, g2) = {α2
1α

4
2}, V (1, g1, g2) = {α−1

1 α3
2}, V (2, g1, g2) = {α1α

−1
2 },

S(0, g1, g2, α
2
1α

4
2) = α2

1g1 − α4
2g2 = α2

1 + α4
2 = g1 + g2,

S(1, g1, g2, α
−1
1 α3

2) = α−1
1 α−1

2 g1 + α−1
1 α3

2g2 = α−1
1 α−1

2 + α1α
3
2 = (α−1

1 α−1
2 )g3,

S(2, g1, g2, α1α
−1
2 ) = α1α

−1
2 g1 − α−1

1 α−1
2 g2 = α−1

1 α−1
2 + α1α

3
2 = (α−1

1 α−1
2 )g3

and

V (0, g1, g3) = {α2
1α

4
2}, V (1, g1, g3) = {α−1

1 α3
2}, V (2, g1, g3) = {α−1

2 },
S(0, g1, g3, α

2
1α

4
2) = α2

1g1 − g3 = α2
1 − 1 = g2,

S(1, g1, g3, α
−1
1 α3

2) = α−1
1 α−1

2 g1 − α−1
1 α3

2g3 = α−1
1 α−1

2 − α1α
7
2

= (α−1
1 α−1

2 )g3 − α1α
3
2g1.
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Note that the r.h.s of this equation satisfies the condition in Theorem 3.7 (i), i.e. lt(higi) ¹ lt(S),
where S = S(1, g1, g3, α

−1
1 α3

2)), i = 1, 3.

S(2, g1, g3, α
−1
2 ) = α−1

2 g1 − α−1
2 g3 = α3

2 − α2
1α

3
2 = −α3

2g2.

Finally,

V (0, g2, g3) = {α2
1α

4
2}, V (1, g2, g3) = {α−1

1 }, V (2, g2, g3) = {α1α
−1
2 },

So

S(0, g2, g3, α
2
1α

4
2) = α4

2g2 − g3 = −α4
2 − 1 = −g1,

S(1, g2, g3, α
−1
1 ) = α−1

1 g2 − α−1
1 g3 = α1α

4
2 + α1 = α1g1,

S(2, g2, g3, α1α
−1
2 ) = α−1

1 α−1
2 g2 − α1α

−1
2 g3 = −α−1

1 α−1
2 − α3

1α
3
2,

= α−1
1 α−1

2 g3 + α1α
3
2g2.

The r.h.s of this equation also satisfies the condition in Theorem 3.7 (i).
So, by Theorem 3.17, G is a Gröbner basis of W .

4 Applications to difference-differential dimension polynomials

In this section we describe a new approach to computing difference-differential dimension poly-
nomials via the difference-differential Gröbner bases. There are some classical approaches de-
scribed by many researchers (see Section 1). Our approach seems more general and more direct.

Let K be a ∆-σ-field, D the ring of ∆-σ-operators over K, M a finitely generated ∆-σ-module
(i.e. a finitely generated difference-differential-module), F a finitely generated free ∆-σ-module.
And we will keep the notation and conventions of the preceding sections.

For λ ∈ Λ of the form (1.1), let ordλ = k1 + · · ·+km + |l1|+ · · ·+ |ln|. Also, for w = λei ∈ ΛE

of a term of F , let ord w = ordλ. If u =
∑

λ∈Λ aλλ ∈ D, then ord u = max{ordλ|aλ 6= 0}.
We may consider D as a filtered ring with the filtration (Dµ)µ∈Z such that Dµ = {u ∈

D|ord u 6 µ} for any µ ∈ N and Dµ = 0 for µ < 0. It is clear that
⋃{Dµ|µ ∈ Z} = D,

Dµ ⊆ Dµ+1 for any µ ∈ Z and DνDµ = Dµ+ν for any µ, ν ∈ Z.

Definition 4.1. Let K be a ∆-σ-field and M be a ∆-σ-module. A sequence (Mµ)µ∈Z of
K-vector subspaces of the module M is called a filtration of M if the following three conditions
hold :

(i) Mµ ⊆ Mµ+1 for all µ ∈ Z and Mµ = 0 for all sufficiently small µ ∈ Z (i.e. there is a
µ0 ∈ Z such that Mµ = 0 for all µ 6 µ0);

(ii)
⋃{Mµ|µ ∈ Z} = M ;

(iii) DνMµ ⊆ Mµ+ν for any µ ∈ Z, ν ∈ N.
If every K-vector space Mµ is of finite dimension and there exist numbers µ0 ∈ Z such that

DνMµ = Mµ+ν for all µ > µ0, ν ∈ N, then the filtration (Mµ)µ∈Z is called an excellent filtration
of M .

Example 4.2. Let M be a finitely generated ∆-σ-module (i.e. a left D-module) with gen-
erators h1, . . . , hq. If Mµ = Dµh1 + · · · + Dµhq for any µ ∈ Z, then (Mµ)µ∈Z is an excellent
filtration of M .
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Definition 4.3. Let K be a ∆-σ-field, M and N be two ∆-σ-modules over K. A homo-
morphism of K-modules f : M → N is called a ∆-σ-homomorphism (or difference-differential
homomorphism), if f(βx) = βf(x) for any x ∈ M , β ∈ ∆ ∪ σ∗. Surjective (respectively,
injective or bijective) ∆-σ-homomorphism is called a ∆-σ-epimorphism (respectively, ∆-σ-
monomorphism or ∆-σ-isomorphism).

Choose the canonical orthant decomposition on Zn as in Example 2.2 and define the gener-
alized term order “≺” on ΛE of the terms of F as follows (see Example 2.10):

If u = δk1
1 · · · δkm

m αl1
1 · · ·αln

n ei and v = δr1
1 · · · δrm

m αs1
1 · · ·αsn

n ej , then

u ≺ v ⇐⇒ (ord u, ei, k1, . . . , km, |l1|, . . . , |ln|, l1, . . . , ln)

< (ord v, ej , r1, . . . , rm, |s1|, . . . , |sn|, s1, . . . , sn) in lexicographic order.

Theorem 4.4. Let K be a ∆-σ-field, D the ring of ∆-σ-operators over K and M be a
finitely generated ∆-σ-module with generators h1, . . . , hq. Let F be a free ∆-σ-module with a
basis e1, . . . , eq and π : F → M the natural ∆-σ-epimorphism of F onto M (i.e. π(ei) = hi

for i = 1, . . . , q).
Let Mµ be the vector K-space as in Example 4.2. Suppose G = {g1, . . . , gd} is a Gröbner

basis of N = ker π with respect to the generalized term order “ ≺ ” defined above, Uµ is the set
of all terms w ∈ ΛE such that ord w 6 µ and w 6= lt(λgi), λ ∈ Λ, i = 1, . . . , d. Then π(Uµ) is
a basis of the K-vector space Mµ.

Proof. First, we show that the set π(Uµ) generates the K-vector space Mµ = Dµh1 + · · · +
Dµhq. Suppose λhi ∈ Mµ and λhi /∈ π(Uµ) for some i = 1, . . . , q, λ ∈ Λ, ord λ 6 µ. Then
λei /∈ Uµ, whence λei = lt(λ′ gj) for some λ′ ∈ Λ, gj ∈ G. Therefore

λ′ gj = ajλei +
∑

ν

aνλνeν ,

where aj 6= 0 and aν 6= 0 for finitely many aν . Obviously, λνeν ≺ λei and then ord λν 6 µ.
Since G ⊆ N = ker(π), we have 0 = π(gj) and

0 = λ′π(gj) = π(λ′ gj) = ajπ(λei) +
∑

ν

aνπ(λνeν) = ajλhi +
∑

ν

aνλνhν .

So that λhi is a finite linear combination with coefficients from K of some elements of the form
λνhν (1 6 ν 6 q) such that ordλν 6 µ and λνeν ≺ λei. Thus, we can apply the induction
to λej (λ ∈ Λ, 1 6 j 6 q) with respect to the order “≺” and obtain that every element λhi

(ordλ 6 µ, 1 6 i 6 q) can be written as a finite linear combination of elements of π(Uµ) with
coefficients from K.

Now, let us prove that the set π(Uµ) is linearly independent over K. Suppose that
∑l

i=1 aiπ(ui)
= 0 for some u1, . . . , ul ∈ Uµ, a1, . . . , al ∈ K. Let h =

∑l
i=1 aiui. Then π(h) = 0 and then

h ∈ N . Since lt(h) = ui ∈ {u1, . . . , ul}, then lt(h) ∈ Uµ and then lt(h) 6= lt(λgi), λ ∈ Λ,
i = 1, . . . , d, by the definition of Uµ. Since G is a Gröbner basis of N it follows from Proposition
3.11 (iii) that h = 0. Therefore a1 = · · · = al = 0. This completes the proof of the theorem.

From Theorem 4.4 the dimension of Mµ as a K-vector space can be computed by Gröbner
bases of difference-differential modules.



Gröbner bases in difference-differential modules and difference-differential dimension polynomials 1749

Definition 4.5. A polynomial f(t1, . . . , tl) in l variables t1, . . . , tl with rational coefficients
is called numerical if f(t1, . . . , tl) ∈ Z for all sufficiently large (r1, . . . , rl) ∈ Zl, i.e. there exists
a l-tuple (s1, . . . , sl) ∈ Zl such that f(r1, . . . , rl) ∈ Z for all integers r1, . . . , rl ∈ Z with ri > si

(1 6 i 6 l).

The following theorem proved by Levin[9] generalizes the Kondrateva’s result on the numerical
polynomials associated with subsets of Nm (cf. [17, 18] ) to the numerical polynomials associated
with subsets of Nm × Zn.

Theorem 4.6. Let A be a subset of Nm×Zn. Choose the canonical orthant decomposition of
Zn (see Example 2.2). Let E be the partial order on Nm×Zn such that (k1, . . . , km, l1, . . . , ln)E
(r1, . . . , rm, s1, . . . , sn) if and only if (l1, . . . , ln) and (s1, . . . , sn) belong to a same orthant and

(r1, . . . , rm, |s1|, . . . , |sn|) ∈ {(k1, . . . , km, |l1|, . . . , |ln|) + Nm+n}.

Furthermore, let

WA = {w ∈ Nm × Zn|there is no element a ∈ A such that aEw}

and

WA[r, s] = {(k1, . . . , km, l1, . . . , ln) ∈ WA|k1 + · · ·+ km 6 r, |l1|+ · · ·+ |ln| 6 s}.

Then there exists a numerical polynomial ψA(t1, t2) in two variables t1 and t2 with the following
properties :

(i) ψA(r, s) = Card WA[r, s] for all sufficiently large (r, s) ∈ N2.
(ii) deg ψA 6 m + n, degt1ψA 6 m, and degt2ψA 6 n.
(iii) If A = ∅, then deg ψA = m + n. In this case,

ψA(t1, t2) =
(

t1 + m

m

) n∑

i=0

(−1)n−i2i

(
n

i

)(
t2 + i

i

)
.

(iv) ψA(t1, t2) = 0 if and only if (0, . . . , 0) ∈ A.

In [9] the author used Theorem 4.6 to prove the existence of difference-differential dimension
polynomial ψ(t1, t2) in two variables t1, t2 of the difference-differential module M by means of
characteristic set with respect to a special reduction. But the approach of characteristic set
is not valid for the one-variable case. However, our approach of Gröbner bases in difference-
differential modules can deal with the difference-differential dimension polynomials in one vari-
able effectively.

The analog of Theorem 4.6 for the existence of numerical polynomial φA(t) in one variable t

associated with the subset A of Nm × Zn can be obtained in the same way as that used in the
proof of Theorem 4.6. (cf. [9]). We state it as follows.

Corollary 4.7. Let A, E and WA be the same as in the conditions of Theorem 4.6. Let

WA[µ] = {(k1, . . . , km, l1, . . . , ln) ∈ WA|k1 + · · ·+ km + |l1|+ · · ·+ |ln| 6 µ}.

Then there exists a numerical polynomial φA(t) with the following properties :
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(i) φA(µ) = Card WA[µ] for all sufficiently large µ ∈ N.

(ii) deg φA 6 m + n, and if A = ∅ then deg φA = m + n.

(iii) φA(t) = 0 if and only if (0, . . . , 0) ∈ A.

Now we may use the approach of Gröbner bases of difference-differential modules to compute
dimension polynomial in difference-differential modules. We give a definition after the following
theorem.

Theorem 4.8. Let K be a ∆-σ-field, D the ring of ∆-σ-operators over K and M be a finitely
generated ∆-σ-module, and (Mµ)µ∈Z an excellent filtration of M . Then there exists a numerical
polynomial φ(t) such that deg(φ(t)) 6 m+n and φ(µ) = dimRMµ for all sufficiently large µ ∈ N.
Furthermore, φ(t) can be written as φ(t) = 2na

(m+n)! t
m+n + o(tm+n), a ∈ Z and o(tm+n) denotes

a polynomial from Q[t] whose degree is less than m + n, and the integers d = degφ(t), a, and
∆dφ(t) do not depend on the choice of a system of generators of the module M . (∆dφ(t) denotes
the d-th finite difference of φ(t) : ∆φ(t) = φ(t + 1)− φ(t), ∆2φ(t) = ∆(∆φ(t)), etc.)

Proof. Since (Mµ)µ∈Z is an excellent filtration of M it follows that every Mµ is a finitely
generated K-vector space and DνMµ = Mµ+ν for µ > µ0, ν > 0. Let h1, . . . , hq be a basis
of the K-vector space Mµ0 . Then the elements h1, . . . , hq generate M as a left D-module and
Mµ =

∑q
i=1 Dµ−µ0hi for all µ > µ0. Without loss of generality we can assume that µ0 = 0. (If

φ(t) is a numerical polynomial with the desired properties that corresponds to the case µ0 = 0
then φ(t−µ0) is the one for arbitrary µ0 ∈ Z.) Thus we may suppose that M =

∑q
i=1 Dhi and

Mµ =
∑q

i=1 Dµhi for all µ ∈ Z.

Let F be a free ∆-σ-module with a basis e1, . . . , eq. Let π : F → M , N = kerπ and
Uµ (µ ∈ N) be the same as in the conditions of Theorem 4.4. Furthermore, let “≺” be the
generalized term order on ΛE of the terms of F and G = {g1, . . . , gd} be the Gröbner basis of
N as in Theorem 4.4. By Theorem 4.4, for any µ ∈ N, π(Uµ) is a basis of the K-vector space
Mµ. Note that in the second part of the proof of Theorem 4.4 it was shown that the restriction
of π on Uµ is bijective, we have dimKMµ = Card π(Uµ) = Card(Uµ).

Note that Uµ = {w ∈ ΛE|ord w 6 µ; w 6= lt(λgi), λ ∈ Λ, gi ∈ G}. Let V
(j)
i be a finite

set of generators of the K[Λj ]-module K[Λj ]〈lt(λgi) ∈ ΛjE|λ ∈ Λ〉. Let V =
⋃

i,j V
(j)
i . Then

Uµ = {w ∈ ΛE|ord w 6 µ; there is no v ∈ V such that v E w}.
Let Vei = {v ∈ V |v = λei, λ ∈ Λ} and U

(i)
µ = {w ∈ Λei|ord w 6 µ; there is no v ∈ Vei such

that v E w}, i = 1, . . . , q. Then Card(Uµ) =
∑q

i=1 Card(U (i)
µ ).

By Corollary 4.7, there exists a numerical polynomial φi(t) such that deg(φi(t)) 6 m+n and
φi(µ) = Card(U (i)

µ ), i = 1, . . . , q, for all sufficiently large µ ∈ N. Therefore φ(t) =
∑q

i=1 φi(t)
satisfies that deg(φ(t)) 6 m + n and φ(µ) = Card(Uµ) = dimRMµ for all sufficiently large
µ ∈ N.

The last conclusion of the theorem is well-known properties of the dimension polynomial φ(t)
that satisfy that deg(φ(t)) 6 m + n and φ(µ) = dimRMµ for all sufficiently large µ ∈ N (cf.
[13]).

Definition 4.9. The numerical polynomial φ(t) in Theorem 4.8 is called difference-differential
dimension polynomial in one variable t associated with M .

The difference-differential dimension polynomial is treated as characteristics of the system
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of defining equations on the generators of M and determines “strength” (Kondrateva[13] and
Levin[9]) of the system of difference-differential equations.

In [15] the authors proved the existence of difference-differential dimension polynomials φ(t)
associated with M by classical Gröbner basis methods of computation of Hilbert polynomials.
Now we present an alternate direct and algorithmic approach of Gröbner bases on difference-
differential modules to compute the difference-differential dimension polynomials. The following
example shows that the computation of difference-differential dimension polynomials associated
with M is rather simple by the method described in Theorem 4.8.

Example 4.10. Let K be a difference-differential field whose basic sets ∆ and σ consist of
a single derivation operator δ and a single automorphism α, respectively. Furthermore, let D

be the ring of ∆-σ-operators over K and M = Dh be a cyclic ∆-σ-module whose generator h

satisfies the defining equation (δaαb + δaα−b + δa+b)h = 0. In other words, M is isomorphic
to the factor module of a free ∆-σ-module F with a free generator e by its ∆-σ-submodule
N = D(δaαb + δaα−b + δa+b)e. Let the generalized term order ≺ on ΛE be the same as in
Theorem 4.8. Then {g = (δaαb + δaα−b + δa+b)e} is a Gröbner basis of N (see Example
3.12). since lt(g) = (δa+b)e belongs to any ortant of ΛE, it follows from Lemma 3.4 (ii) that
lt(λg) = λ(δa+b)e for any λ ∈ Λ. Then by Theorem 4.8,

dimKMt = Card(Ut) = Card{u ∈ Λ|ordu 6 t;u 6= λδa+b, λ ∈ Λ}.

Therefore,

dimKMt = Card{δcαd|c ∈ N, d ∈ Z, c + |d| 6 t, (c, |d|) /∈ {(a + b, 0) + N2}}
= Card{δcαd|c ∈ N, d ∈ Z, c + |d| 6 t}
− Card{δcαd|c ∈ N, d ∈ Z, c + |d| 6 t− (a + b)}

= [(t + 2)(t + 1)− (t + 1)]− [(t− a− b + 2)(t− a− b + 1)− (t− a− b + 1)]

= 2(a + b)t + (a + b)(2− a− b).

The result of above example coincides with that shown in [9, 13]. But our approach is based
on computing the Gröbner bases on difference-differential modules directly. The following
example shows that when we choose another generalized term order to compute the Gröbner
bases we can also get the same difference-differential dimension polynomial.

Example 4.11. Let M be the ∆-σ-module same as in Example 4.10. But the generalized
term order ≺ on ΛE is defined as follows:

δkαle ≺ δrαse ⇐⇒ (k + |l|, |l|, k, l) < (r + |s|, |s|, r, s) in lexicographic order.

Note that Theorems 4.4 and 4.8 still valid for “≺”. Denote {δkαl|l > 0} by Λ1 and {δkαl|l 6 0}
by Λ2. Since lt(g) = δaαbe ∈ Λ1 and lt(α−1g) = δaα−(b+1)e ∈ Λ2 it follows that

{lt(λg) ∈ Λ1|λ ∈ Λ} = Λ1δ
aαbe, {lt(ηg) ∈ Λ2|η ∈ Λ} = Λ2δ

aα−(b+1)e.

Therefore

dimKMt = Card{δcαd|c, d ∈ N, c + d 6 t, (c, d) /∈ {(a, b) + N2}}
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+ Card{δcαd|c ∈ N, d ∈ Z, d < 0, c + |d| 6 t, (c,−d) /∈ {(a, b + 1) + N2}}
=

[
1
2
(t + 1)(t + 2)− 1

2
(t− a− b + 1)(t− a− b + 2)

]

+
[
1
2
t(t + 1)− 1

2
(t− a− b)(t− a− b + 1)

]

= 2(a + b)t + (a + b)(2− a− b).
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9 Levin A B. Reduced Gröbner bases, free difference-differential modules and difference-differential dimension

polynomials. J Symb Comput, 30: 357–382 (2000)

10 Kolchin E R. The notion of dimension in the theory of algebraic differential equations. Bull Am Math Soc,

70: 570–573 (1964)

11 Johnson J. Kahler differentials and differential algebra in arbitrary characteristic. Trans Am Math Soc,

192: 201–208 (1974)

12 Levin A B, Mikhalev A V. Differential dimension polynomial and the strength of a system of differential

equations. In: Computable Invariants in the Theory of Algebraic Systems, Collection of Papers: Novosi-

birsk, 1987, 58–66

13 Kondrateva M V, Levin A B, Mikhalev A V, PankratevKahler E V. Differential and Difference Dimension

Polynomials. Dordrecht: Kluwer Academic Publishers, 1999

14 Levin A B. Characteristic polynomials of filtered difference modules and of difference field extensions. Russ

Math Surv, 33: 165–166 (1978)

15 Mikhalev A V, PankratevKahler E V. Computer Algebra. Computations in Differential and Difference

Algebra. Moscow: Moscow State Univ Press, 1989

16 Wu M. On solutions of linear functional systems and factorization of modules over Laurent-Ore algebras.

Doctoral Thesis, Nice University, France, 2005

17 Kondrateva M V, Levin A B, Mikhalev A V, PankratevKahler E V. Computation of dimension polynomials.

Intern J Algebra Comput, 2: 117–137 (1992)
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