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Abstract In this paper we extend the theory of Grobner bases to difference-differential modules and
present a new algorithmic approach for computing the Hilbert function of a finitely generated difference-
differential module equipped with the natural filtration. We present and verify algorithms for construct-
ing these Grobner bases counterparts. To this aim we introduce the concept of “generalized term order”
on N x Z" and on difference-differential modules. Using Grobner bases on difference-differential mod-
ules we present a direct and algorithmic approach to computing the difference-differential dimension
polynomials of a difference-differential module and of a system of linear partial difference-differential
equations.
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1 Introduction

The efficiency of the classical Grobner basis method for the solution of problems by algorithmic
way in polynomial ideal theory is well-known. The results of Buchberger!!! on Grébner bases in
polynomial rings have been generalized by many researchers to non-commutative case, especially
to modules over various rings of differential operators. Galligo!? first gave the Grobner basis
algorithm for the Weyl algebra A,. Moral®l generalized the concept of Grobner basis to non-
commutative free algebras. Noumil¥ and Takayamal® formulated the Grobner bases in R,,, the
ring of differential operators with rational function coefficients. Oaku and ShimoyamalS! treated
Dy, the ring of differential operators with power series coefficients. Insa and Pauerl”) presented
a basic theory of Grobner bases for differential operators with coefficients in a commutative
noetherian ring. It has been proved that the notion of Grébner basis is a powerful tool to solve
various problems of linear partial differential equations.

On the other hand, for some problems of linear difference-differential equations such as the
dimension of the space of solutions and the computation of difference-differential dimension
polynomials, the notion of Grobner basis for the ring of difference-differential operators is

essential. Grobner bases in rings of differential operators are defined with respect to a term order
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on N” x N™ or N™. This approach cannot be used for the ring of difference-differential operators,
because for it we need to treat orders on N x Z". Pauer and Unterkircher(®! considered Grobner
bases in Laurent polynomial rings, but it is limited in commutative case. Levin!® introduced a
characteristic set for free modules over rings of difference-differential operators. It is an analog
of “Grobner basis” connected with a specific “ordering” on N™ x Z". But the ordering is not

a term-ordering while the theory of Grobner basis works for any term-ordering.

The concept of the differential dimension polynomial was introduced by Kolchin!'? as a
dimensional description of some differential field extension. Johnson!*!l proved that the differ-
ential dimension polynomial of a differential field extension coincides with the Hilbert polyno-
mial of some filtered differential module. This result allowed to compute differential dimension
polynomials using the Grobner basis technique. Since then various problems of differential al-
gebra involving differential dimension polynomials were studied (see [12, 13]). The concepts of
the difference dimension polynomial and the difference-differential dimension polynomial were
introduced first in [14, 15] respectively. They play the same role in difference algebra (resp.
difference-differential algebra) as Hilbert polynomials in commutative algebra or differential
dimension polynomials in differential algebra. The notion of difference-differential dimension
polynomial can be used for the study of dimension theory of difference-differential field extension

and of systems of algebraic difference-differential equations.

Mikhalev and Pankratev!!? proved existence of difference-differential dimension polynomials
@(t) associated with a difference-differential module M by classical Grébuner basis methods of
computation of Hilbert polynomials. The proof is based on the fact that the ring of difference-
differential operators over the difference-differential field R is isomorphic to the factor ring of the
ring of generalized polynomials R[z1, ..., Zmi2n] (Where z;a = az;+0;(a) (1 <i < m), Ty 0 =
]
by the polynomials @, ;Zmin+; — 1 (1 < j < n). Wullfl also computed dimensions of linear

()Tt and Tyqntja = a; (a)Tmtntj (1 < J < n) for any a € R) by the ideal I generated
difference-differential systems by the above approach. However, a similar approach to difference-
differential dimension polynomials in two variables is unsuccessful. Levinl® investigated the
difference-differential dimension polynomials in two variables by the characteristic set approach.
The method of Levin is rather delicate but no general algorithm for computing the characteristic

set.

In this paper we present a new approach, difference-differential Grébner basis, for algorith-
mic computing the difference-differential dimension polynomials. It is based on the algorithm
of computation of Grébner basis for an ideal of (or a module over) the ring of difference-
differential operators. In Section 2 the generalized term order and its properties are discussed
and some examples are presented. In Section 3 we design carefully the reduction algorithm,
the definition of the Grobner basis and the S-polynomials, as well as the Buchberger algorithm
for the computation of the Grébner bases. In Section 4 we describe an approach to com-
puting difference-differential dimension polynomials associated with a module over the ring of
difference-differential operators via the Groébner bases.

Throughout the paper Z, N, Z_ and Q denotes the sets of all integers, all non-negative
integers, all non-positive integers, and all rational numbers, respectively. By a ring we always

mean an associative ring with a unit. By the module over a ring A we mean a unitary left
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A-module.
Definition 1.1.  Let R be a commutative noetherian ring, A = {d1,...,0m} and o =
{a1,...,a,} be set of derivations and automorphisms of the ring R, respectively, such that

B(z) € R and B(y(x)) = v(B(x)) hold for any 8,7 € AUoc and x € R. Then R is called a
difference-differential ring with the basic set of derivations A and the basic set of automorphisms
o, or shortly a A-o-ring. If R is a field, then it is called a A-o-field.

If R is a A-o-ring, then A will denote the commutative semigroup of elements of the form

A=k gkmal gl (1.1)
where (ki,...,kn) € N™ and (ly,...,0,) € Z™. This semigroup contains the free commutative

semigroup © generated by the set A and free commutative semigroup I' generated by the set

o. The subset {a1,...,an, a7, ..., a; '} of A will be denoted by o*.

Definition 1.2. Let R be a A-o-ring and the semigroup A be as above. Then an expression

of the form
> aa, (1.2)
AEA
where ay € R for all A € A and only finitely many coefficients ay are different from zero, is
called a difference-differential operator (or shortly a A-o-operator) over R. Two A-c-operators

Y onea @A and 5y o baX are equal if and only if ax = by for all A € A.

The set of all A-o-operators over a A-o-ring R is a ring with the following fundamental

DA+ A=) (ax+b)A, a< > a,\/\> =) (aax)A,

relations

A€A A€A A€A A€A A€A (1.3)
(Zak)\)u: ZaA()\,u), da = ad + d(a), Ta = 7(a)T,
AEA AEA

for all ay,by € R, A, u € A, a € R, § € A, 7 € o*. Note that the elements in A and ¢* do
not commute with the elements in R, and then the “terms” A € A do not commute with the

coefficients ay € R.

Definition 1.3.  The ring of all A-c-operators over a A-o-ring R is called the ring of
difference-differential operators (or shortly the ring of A-c-operators) over R, which will be
denoted by D. A left D-module M is called a difference-differential module (or a A-o-module).
If M is finitely generated as a left D-module, then M is called a finitely generated A-o-module.

When o = 0, D will be the rings of differential operators R[d1, ..., d,,]. If the coefficient ring
R is the polynomial ring over a field K, then D will be Weyl algebra A,,. So A-o-module is a
generalization of module over rings of differential operators. But in the ring of A-o-operators
the “terms” are the form (1.1) and the index in ay,...,a, is (I1,...,1,) € Z", the notion of
“term order”, as commonly used on Grobner bases theory, is no longer valid. We generalize the

concept of term order in the following section.

2 Generalized term order on N™ x Z™

Note that Z" = Z X Z x --- x Z is a group. We consider first some decomposition of Z™. For
instance, Z2 = {Nx N}U{N x Z_} U{Z_ x N} U{Z_ x Z_}. Then we may define a kind of
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“term order” along every one of the 4 directions. And then an algorithm based on the “term

order” may terminate after finite steps.
Definition 2.1. Let Z™ be the union of finitely many subsets Z;n) VA Ule ng where
Z§n), j=1,...,k, satisfy the following conditions:

(i) (0,...,0) € Zg-n), and Zgn) does not contain any pair of invertible elements ¢ = (c1,...,¢n)
#0 and ¢t = (—c1,...,—Cp);

(i) Z;") is finitely generated sub-semigroup of Z";

(iii) the group generated by Z;n) is "™,
then {Z§-n)7j =1,...,k} is called an orthant decomposition of Z" and Z;-n) is called the j-th

orthant of the decomposition.
Remark. The conditions in Def. 2.1 imply that we may define a smallest element in every
Zgn), and that Z§-n) has some similar structures as N(™).

Example 2.2. Let {Zg"), . ,Zgi)} be all distinct Cartesian products of n sets each of which
is either N or Z_. Then it is an orthant decomposition of Z™. The set of generators of Zg")
as a semigroup is {(c1,0,...,0),(0,¢2,0,...,0),...,(0,...,0,¢c,)}, where ¢; is either 1 or —1,

i=1,...,n. We call this decomposition the canonical orthant decomposition of Z".

Example 2.3. Let Zé") be the sub-semigroup of Z™ generated by
{(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)},

and Zgn) be the sub-semigroup of Z™ generated by

{(-1,...,-1D}u{(,o0,...,0),(0,1,0,...,0),...,(0,...,0,1)}\{(0,...,0,1,0,...,0)},
’ 7=L2...,n

Then {Z(()n), Zg"), . ,Z%n)} is an orthant decomposition of Z™. For n = 2, we have

78 = {(a,b)|a > 0,b > 0,a,b € Z},
7™ = {(a,b)|a < 0,b > a,a,b € Z},
78 = {(a,b)[b < 0,a > b,a,b € 7}

Definition 2.4. Let {Zg"%j = 1,...,k} be an orthant decomposition of Z"™. Then a =
(k1y. s kmyl1, .oy ln) and b= (r1,...,"m, S1,-..,8n) of N™ X Z" are called similar elements,
if the n-tuples (I1,...,1,) and (s1,...,8n) are in the same orthant Zg»n) of Z™. In this case we

also say a is similar to b.

Definition 2.5. Let {Z;-n), j=1,...,k} be an orthant decomposition of Z"™. A total order
“L7 on N X Z™ is called a generalized term order on N™ X Z™ with respect to the decomposition,
if the following conditions hold:

(i) (0,...,0) is the smallest elements in N™ x Z™;

(i) if a < b, then for any ¢ similar to b, a + ¢ < b+ ¢, where a,b,c € N"™ x Z".

Remark. Def. 2.5 (ii) means that in every orthant the order just is a usual term order.
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Example 2.6. Let {Z;n), j=1,...,2"} be the canonical orthant decomposition of Z™ defined
in Example 2.2. For every a = (k1,...,km,l1,...,l,) € N™ x Z™ let

lal = k4 Ko 4l [l

For two elements a = (ki,...,km,l1,...,0n) and b = (ri,...,7m,81,...,8,) of N x Z"
define a < b if and only if the m + n + 1-tuple (|al,k1,...,km,l1,...,1l,) is smaller than
(1], 71, -+ s Tm, 81, .., 8n) relative to the lexicographic order on N™*+1 x Z". Then “<” is a
generalized term order on N™ x Z".

In fact, obviously (0,...,0) is the smallest elements in N™ x Z™. Now let a < b and ¢ be
similar to b. Then |a| < |b]. We have

la+cf < laf +le| <[b]+ |c] = [b+¢]. (2.1)

The last equation holds because c is similar to b. If [a +¢| < |b+¢|, then a + ¢ < b+ c. If
la + ¢| = |b+ cl|, then |a| = |b| must hold by (2.1). So the m + n-tuple (k1,...,km,l1,.-.,1ln)

is lexicographically smaller than (r1,...,7m,81,...,8,). Then (k1 + w1, ..., km + wm,l1 +
V1, ..., ln +vy) is lexicographically smaller than (r1 + w1, ..., 70 4 Um, S1 + 01, .. ., Sy + vy for
¢= (U1,...,Un,V1,...,0,) similar to b. In this case we also have a + ¢ < b+ c.

Example 2.7. Let the orthant decomposition of Z" be as in Example 2.2. For every a =
(ktses by liy ey ln) € N Z let |aly = 3050 Ky, Jale = 327, [l For two elements a =
(K1, s kmy 1,y ly) and b= (r1, ..., 7, S1, .« ., Sp) of N™ X Z™ define a < b if and only if the

m + 2n + 2-tuple (|al1, |al2, k1, -« Km, |l -5 [nl, 11, - - -, 1n) 18 lexicographically smaller than
(I16l1, 16125715 - - - s Tm, IS1ly - - -5 |Snl, S1,5- - -, Sn)- Then “<” is a generalized term order on N™ x Z™.

First, we note that it is obvious that (0,...,0) is the smallest elements. Then, let a < b and
¢ = (U1y...,Un,01,...,0,) be similar to b. Because |a|; < |bl1, so |a+ ¢y < |b+c¢|1. But

la + ¢c|1 < |b+ c|r would imply a + ¢ < b+ ¢, we can suppose |a + ¢|; = |b+ ¢|;. This would
imply |a|; = |b]1 and then |als < |bl2. A relation similar to (2.1) would give |a + ¢|a < |b + ¢|a.
In the “<” case a + ¢ < b+ ¢ would hold.
Now suppose |a + c|y = [b+c|1, |a+ c|a = b+ ¢|2. Then |a]y = |b]1, |al]s = |b]2. Note that
forj=1,...,n,
1 + vl <1+ vl < sjl + [vj] = Is; + vy

So if (k1,... s km, 1]y s |lal 1,y - -5 L) is lexicographically smaller than (ri,...,7m,|s1],. ..,
[Snl, 815+, 8n), then a+ ¢ <b+ec.
Example 2.8. Let {Zgn), j = 0,1,...,n} be the orthant decomposition of Z" defined in
Example 2.3. For every a = (ki1,...,km,l1,...,ln) € N x Z" let |la]| = —min{0,14,...,0,}.
For two elements a = (k1,...,km,l1,...,l,) and b= (r1,...,7m, S1,...,8,) of N™ X Z™ define
a < b if and only if the m + n + 1-tuple (|lal|, k1,. .., km,l1,. .., 1) is lexicographically smaller
than (||bl|,71,- -+, 7m,S1,.-.,8,). Then “<” is a generalized term order on N™ x Z™.

To prove this, note that Z;n) ={(i1,...,0n) | 1; <05 i =45,k # j}, j=1,...,n. It would
imply min{éy,...,4,} = i; when (i1,...,4,) € Zg”). Then for any a,c € N™ x Z™ we have

lla + ¢|| < |lal] + ||c||- Equality holds if and only if that a and ¢ are similar elements. Then it is

clear that the “<” is a generalized term order on N x Z" following the way as in Example 2.6.



Grébner bases in difference-differential modules and difference-differential dimension polynomials 1737

In order to investigate A-o-modules, we extend the notion of generalized term order to

N™ x Z" x E, where E = {e1,...,e,} is a set of generators of a module.
Definition 2.9. Let {Z;n),j = 1,...,k} be an orthant decomposition of Z". Let E =
{e1,...,¢eq} be a set of q distinct elements. A total order < on N™ x Z"™ x E is called a

generalized term order on N™ x Z™ x E with respect to the decomposition, if the following
conditions hold:

(i) (0,...,0,¢;) is the smallest element in N™ x Z" x {e;}, e; € E;

(ii) if (a,e;) < (b,e;), then for any c similar to b, (a + c,e;) < (b+ ¢, e;), where a,b,c €
N™ x Z", e;,e; € E.

There are many ways to extend a generalized term order on N™ x Z™ to N™ x Z™ x E. Of
course such an extended term order may also be defined directly. Some typical examples are

shown below.

Example 2.10. Let the orthant decomposition of Z" and the generalized term order “<”
on N™ x Z™ be as in Example 2.7. Given a order “<” in E = {ey,...,¢e,}, for two elements
(a,e;) = (k1,- -, kmyl1, .oy lnyeq) and (bye;) = (11, ..., Ty S15 -+ -, Sny €5) Of N X Z™ X E define

(a,e;) <1 (byej) =a<b or (a=0b and e; < ¢;);
(a,e;) <2 (b,ej) <=e; <" e; or (e; =e; and a < b);
(asei) <3 (bej) <= (lal1; lalz, ei k1, Ky [l ],y Tnl by 1)

< (|bl1, |bl2, €5, 715« Tms |51, -+ Sn]s S1,. .., 8) in lexicographic order.

Then “<1”7, “<5”, “<3” are all generalized term order on N x Z" x E.
“<1” is called TOP extension of “<” and “<5” is called POT extension of “<”. “<3” is a
generalized term order defined directly.

Lemma 2.11. Let {Z;n), Jj=1,....k} be an orthant decomposition of Z"™ and “<” be a
generalized term order on N™ x Z™ with respect to the orthant decomposition. Suppose every
orthant Zgn) s isomorphic to N™ as a semigroup. Then every strictly descending sequence in

N™ x Z™ is finite. In particular, any subset of N™ x Z™ contains a smallest element.

Proof. Let a1 = ag > as = --- be a strictly descending sequence in N x Z"™. Since there
are finitely many orthants, without loss of generality we may assume that all a; are similar
(n) .

is

elements which are in N™ x Zgn) for a fixed ¢. By the condition of the Lemma, N™ x Z;
isomorphic to N™*™ as a semigroup. Define order <; on N asa <1 b <= f~1(a) < f~1(b),
where f is the isomorphic map from N x Zgn) to N and < is the generalized term order
on N x Z". Since < is a term order on N x Zgn), it follows that <; is a term order on N”**™,

Then the assertion of the Lemma follows from the well-order property of term order on N7**7,

Remark. In Lemma 2.11 the condition “every orthant Zg")

is isomorphic to N™ as a semi-
group” is necessary. From Definition 2.1 we can not deduce the condition. Also, there are

counterexamples illustrate that the Lemma can not holds without the condition.

Lemma 2.11 means that an algorithm based on a generalized term order on N™ x Z" may
terminate after finite steps. To deal with difference-differential modules we have following

corollary.
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Corollary 2.12.  Given an orthant decomposition of Z" and a generalized term order “<”
on N™ x Z" x E, every strictly descending sequence in N™ x Z™ x E is finite. In particular,

any subset of N™ x Z"™ x E contains a smallest element.

Proof. Let a1 > as = ag > --- be a strictly descending sequence in N™ x Z"™ x E. Since E
is a finite set, we may suppose that all a; are in N™ x Z™ x {e;} for an ¢. Then Lemma 2.11

shows that the conclusion holds.

3 Grobner bases in finitely generated difference-differential-modules

In classical Grobner basis theory, the concept of reduction of polynomials is essential. To de-
scribe reduction in a difference-differential-module, we first investigate some basic multiplication
and division properties in the module.

Let {ZE.")7 j=1,...,k} be an orthant decomposition of Z"™ and “<” be a generalized term
order on N™ x Z™ with respect to the orthant decomposition. Let A be the semi-group introduced
in Section 1 in which the elements are of the form (1.1). Since A is isomorphic to N™ x Z™ as a
semigroup, the “<” would define an order on A. We also call it a generalized term order on A.

Let K be a A-o-field and D be the ring of A-o-operators over K, and let F' be a finitely
generated free D-module (i.e. a finitely generated free difference-differential-module) with a set
of free generators E = {ey,...,e,}. Then F can be considered as a K-vector space generated
by the set of all elements of the form Xe; (i =1,...,q, where A\ € A). This set will be denoted
by AE and its elements will be called “terms” of F'. In particular the elements of A will be
called “terms” of D. If “<” is a generalized term order on N™ x Z™ x B then “<” would define

a generalized term order on AFE.

It is clear that every element f € F has a unique representation as a linear combination of

terms:

f = (11)\1(3]‘1 +"'+ad)\d€jd (31)
for some nonzero elements a; € R (i = 1,...,d) and some distinct elements Aiej,, ..., Agej, €
AE.

If a term Ae; appears in the form (3.1) of f, then it is called a term of f. If (k1, ..., km,l1,. ..,
l,) and (r1,...,7m,S1,...,5n) are similar elements in N™ x Z"™ then the two terms \; =

Opr - okmalt . aln and Ay = 671 - 0Tmalt - agn of D are called similar. If A\, Ay € A are

similar, then the two terms u = Aie;,v = Ase; € AE are called similar.

Definition 3.1. Let “ <7 be a generalized term order on AE, f € F be of the form (3.1).
Then 1t(f) = max<{\ej,[i = 1,...,d} is called the leading term of f. If Nie;, = It(f), then
le(f) = a; is called the leading coefficient of f.

Note that in the case of that “<” is a generalized term order, in general the equation Alt(f) =
It(Af) is not true unless the leading term 1t(f) = ne; of f is such that 7 is similar to .

Now we are going to construct the division algorithm in the difference-differential module
F. First we give some lemmas to describe the multiple properties in difference-differential
modules. In what follows we always assume that an orthant decomposition of Z™ is given and

a generalized term order is with respect to the decomposition.
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Definition 3.2.  Let X be the form of (1.1). Then the subset A; of A,

Aj={A=6f - dkmal o ale|(l,. . 1) € 2V,
where Zgn) 18 the j-th orthant of the decomposition of Z™, is called j-th orthant of A. Let F
be a finitely generated free D-module and AE be the set of terms of F. Then AjE = {\e;|A €
A, e; € E} is called j-th orthant of AE.

Obviously, two elements in A or AFE are similar if and only if they are in same orthant. So
from Def. 2.5, if “<” is a generalized term order on A and £ < A, then n€ < nA holds for any 7

in the same orthant as \.

Lemma 3.3. Let A € A and a € K, “<” be a generalized term order on A C D. Then
Aa = a’' A+ &, where a’ = a(a) for some o € T (see (1.1)), and if a # 0 then @’ # 0; £ € D with
1t(€) < X\ and all terms of £ are similar to \.

Proof. Let A = 6t -..6Fmalt .. aln as (1.1). Denote o!' ---alr by a. Then by the funda-
mental relations (1.3) we have

Ao =68 gEma(a)a = o8 oFmala = (a8 - 8Fm 4 p)a = a0 - 8Fma+ 9a,

where n € R[A], ' = a(a). Because o; € 0, j = 1,...,n, are invertible, we have a’ # 0 if
a#0.

If It(n) = 5]1Ci ~~~5fn;”, then it is obvious that (k1,...,kn) € {(k,..., k) + N™} from (1.3).
This means that 1t(n) < 6% ... §%=. Furthermore, since da and na are always similar for a in
o and 0,7 in A, we see that all terms of £ = na are similar to A. Since 5{“ - 6Fm is in every
orthant of A, it follows that 1t(&) = lt(na) < 6% ... §Fma = A

In general 1t(Af) = Alt(f) is not true. But we have the following

Lemma 3.4. Let F be a finitely generated free D-module and 0 # f € F. Then the following
assertions hold:

(i) If X € A, then It(\f) = max<{Au;} where u; are terms of f and then It(Af) = Au for a
unique term u of f.

(ii) If 1t(f) € Aje then for any X € Aj, lt(Af) = Alt(f) € AJE.

Proof. (i) Suppose that f = Zle a;Miej, as (3.1) and A € A, then by Lemma 3.3 we have

d d
Af = Z /\ai/\ieji = Z(a;)\ + §i))\ieji, (32)
i=1 i=1
where &; € D with 1t(&;) < A. Note that & = n;a in the proof of Lemma 3.3, where n; € R[A],

In guch

o €T. So every term of &; is the form of o;a with o; € © (see (1.1)) and a = o}t --- ok

that A = 0% ... kmalt ... alr as in the proof of Lemma 3.3. Tt follows that

m n
gialie;, < O - FmaNe;, = Aey,. (3.3)

So It(Af) € {Mej, }. If Aiej, = ANe), then ej, = €} and A; = Aj. Therefore lt(\f) =

Ji
max{A\e;,[i =1,...,d} = Au for a unique term u of f.
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(ii) Suppose that f is as above and 1t(f) = Ae;, € AjE. If A € Aj, then in (3.2) we have
Aiej; < Arej,. Then X similar to Ay implies

)\/\ieji < )\)\163'1. (34)

From (3.3) and (3.4) we conclude that 1t(\f) = At(f) € A, E.

Lemma 3.5. Let F be a finitely generated free D-module and 0 # f € F. Then for each j,
there exists some A € A and a term u; of f such that It(Af) = Au; € AjE. Furthermore, the
term u; of f is unique: if It(A f) = Muy, € AjE and It(Aof) = Aouy, € AjE then uj, = uj,.
We will write 1t;(f) for this term u,;.

Proof. Let f be the form of (3.1) and then {Aej,|i = 1,...,d} be the set of terms of f.
Let \; = 0%ati, s; € N™ and t; € Z". By Def. 2.1 (iii), the group generated by Z§-n) is Z™.
Therefore there exist u;, v; € Zg.”) such that u; —v; = ¢;. This means that o' \; = §*a" € A;.
Put (; = a¥ and )\ = H?Zl (i, then A- Xy € Aj holds for all i = 1,...,d. Now we have

d d
A= Aaidies, = Y (ald+ &) ie;,
i=1 i=1
from Lemma 3.3. Because there is no § factor in A, §; = 0 from the proof of Lemma 3.3. Then
all terms of A\f are in A;E and It(\f) € A;E.

Now suppose that there are terms u, v of f such that It(Af) = Au € AjE, It(nf) =nv € A;E.
For A\, n € A the above proof shows that there is ¢ € A; such that (A, {(n € A;. Since
Av = Ay, nu = v then (Av < (Au, (nu < (v because ¢ € A;. Furthermore, this would imply
(Cm) A < (Cn)CAu, (CA)Cnu = (CA){nv because ¢\, ¢(n € Aj. Then (n¢Av = (n{Au and then
u=v.

Denote the term u = v of f by It;(f), then for any A € A such that It(Af) € AjE, t(Af) =
At (f).

Remark. Lemma 3.5 asserts that, either A € A; or A ¢ A;, we have It(Af) = Alt;(f) for a
unique u = It;(f) as long as It(Af) € A E.

For instance, let f = a;2a3 + aja;? (the generalized term order as in Example 2.6 and
ar, a3 € 0). A= ajlay € Ao, = a7%a;t € As. Then Af = a7a) + atast, nf =
a0 + atay® and t(\f) = a7ad € Ay = Aoy 2ad, t(nf) = a7 ’a3 € Ay = naj?a3. Then
lt2(f) = oy %a3. Note that 1t(f) = adas ? # lta(f).

Ifh=>% b €D, f= Zje.] cju; € F, then hf = Zie],je.} bicjA;uj. Since some of A\ju;
may be equal and vanish in terms of hf, it would be problematic if 1t(hf) < A;u; might occur
for some A; and u;. The following proposition asserts that this undesirable situation cannot

occur.

Proposition 3.6. Let0# f € F,0+# h € D. Then lt(hf) = max<{\ur} where \; are
terms of h and ug are terms of f. Therefore 1t(hf) = Au for a unique term X\ of h and a unique

term u of f.

Proof. Let h = Ziel b;A\; where I is a finite set and A;, ¢ € I, are distinct elements in
A. Then hf = >, ;b;\if. By Lemma 3.4 (i), there is a unique term ug, of f such that

It(A:f) = Mg, = Nuyg for all terms uy of f. Also we have that 1t(\;f) = A\jug,, ¢ € I, are
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distinct: if 1t(\;, f) = 1t(\;, f) then they must be in a same A;E. It follows from Lemma 3.5
that there is a unique term 1t;(f) of f such that

1(Ai, f) = Aiy 165 (f) = 16(Niy f) = Ai1t5(f) € ASE.

Therefore \;; = A;,. Since \;, ¢ € I are distinct, this is impossible. So we have lt(hf) €
{Niug, ier = {I6(A;f) }ier. This means that there is a unique i such that

le(hf) =16(Nip f) = Nigur,, = Niug (3.5)

ig —
for all terms A; of h and all terms uy, of f.

Theorem 3.7. Let fi,..., f, € F\{0}. Then every g € F can be represented as
g=hifi+-+hpfp+r (3.6)

for some elements hy,...,hy, € D and r € I such that

(i) h; =0 orlt(h; f;) X 1t(g), i =1,...,p; (By Proposition 3.1 this means that Au < 1t(g) for
all terms X of h; and all terms u of f;.)

(ii) r = 0 or 1t(r) 2 1t(g) such that It(r) & {L(Af)|A e A,i=1,...,p}.

Proof.  The elements hq,...,h, € D and r € F' can be computed as follows:
First set r=gand h; =0,i=1,...,p.
Suppose r # 0, i.e. r = lc(r)lt(r) + " and 1t(r) = 1t(A; f;) for some f; and an element A; € A.
Then X; f; = c;lt(\ifi) + &, where ¢; = le(\; f;) and 16(&;) < 16(\; f;). Therefore
’ ,_le(r) /
r=le(r)lt(r) +r" =le(r)lt(Nifi) + 7' = Nifi = &)+

Ci

Put b; = lcg) and r; = ICC(: (—&) +r'. Then r = b;\; f; + r;. Now we may replace r by r; and
h; by h; + b;\;. Since in each step we have 1t(r;) < 1t(A\;f;) < 1t(r) < 1t(g), by Corollary 2.12,
the algorithm above terminates after finitely many iterations.

Remark. Since nlt(\;fi) = WW(nAifi) = WA, f;) for any 7 similar to 1t(\;f;) from Lemma
3.4(ii), the condition (ii) in Theorem 3.7 means that r = 0 or 1t(r) < 1t(g) such that 1t(r) is not
in AjI6(N; f;) i W6(Ni fi) € AE.

Definition 3.8.  Let f1,..., f, € F\{0}, g € F. Suppose that the equality (3.6) holds and the
conditions (1), (ii) in Theorem 3.7 are satisfied. If r # g we say g can be reduced by { f1,..., fp}
to r. In this case we have 1t(r) < 1t(g) by the proof of Theorem 3.7. In the case of r = g and
hi=0,i=1,...,p, we say that g is reduced with respect to {f1,..., fp}

The following example illustrates the reason for the condition (ii) in Theorem 3.7.
Example 3.9. Let K = Q(x1,22), D = K[61, 02, a, a~!], where 41, d5 are the partial deriva-
tive by x1, x5 respectively, and « is an automorphism of K. Choose generalized term order on
N? x Z as in Example 2.6, i.e.

u = §’f16§2al < v =101"052a" < (|ul, k1, k2,1) < (Jv|,71,72,5) in lexicographic order,

where |u| = k1 + ko + |I].
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Let g = 01a™? + 62a?, f =61 + . Then
g=061a 2+ 00 =a 6ot Fa)+ (a® — 1) =a " f + .

Although 1t(r1) = 202 is not any multiple of 1t(f) = d1a™*, we can find A\ = dra such that
lt(r1) = 16(A\f) = 1t(0102 + d2a?). Therefore

g=a  f +af + (=0102—1) = (of1 + dgx) f + Ta.

Now ry satisfies the condition (ii) in Theorem 3.7. Then ¢ is reduced by f to 7.

The concept of classical Grobner bases in commutative polynomial algebra can be defined in
several ways. The essential point is: G is a Grobner basis of W if every f € W can be reduced
to 0 by G. This means that 1t(f) = Alt(g;) = lt(\g;) for some g; € G. We can go along this

way to define difference-differential Grobner bases.

Definition 3.10. Let W be a submodule of the finitely generated free D-module F' and < be
a generalized term order on AE. G ={¢1,...,9,} € W\{0}. Then G is called a Grébner basis
of W (with respect to the generalized term order <) if for any f € W\{0}, It(f) = 1t(\g;) for
some A € A, g; € G. If every element of G is reduced with respect to other element of G, then
G is called a reduced Grobner basis of W.

Remark. Using 1t;(g) which is introduced in Lemma 3.5, Definition 3.10 is equivalent to:
G is a Grobner basis of W iff for any f € W\{0}, if 1t(f) € AjE, then 1t(f) = Alt;(g;) for
some XA € A, g; € G. (Note that At;(g;) = It(Ag;) by Lemma 3.5. We see that the style of

Definition 3.10 is simple and clear.)

Proposition 3.11. Let G be a finite subset of W\{0}. The following assertions hold:

(i) G is a Grébner basis of W if and only if every f € W can be reduced by G to 0. So a
Grébner basis of W generates the D-module W .

(ii) If G is a Grobner basis of W, f € F, then f € W if and only if f can be reduced by G
to 0.

(iii) If G is a Grébner basis of W, then f € W is reduced with respect to G if and only if
f=0.
Proof. (i) If G is a Grobner basis of W, f € W, then from Theorem 3.7 f can be reduced
by G to r with lt(r) does not equal any lt(Ag), A € A, g € G. If r # 0 then r € W, therefore
1t(r) = 1t(Ag) for some g € G and some A € A,which is a contradiction.

If every f € W can be reduced by G to 0, then f = deG
a g € G such that 1t(f) = maxgec{lt(hgg)} = Au for a term X of h, and a term u of g. Then
1t(f) = 1t(A\g). By Definition 3.10, G is a Grobner basis of W.

(ii) and (iii) follow easily from Theorem 3.7 and Definition 3.10.

hgg. By Proposition 3.6, there is

Example 3.12. If W is generated by just one element g € F\{0}, then any finite subset G
of W\{0} containing g is a Grobuner basis of W. In fact, 0 # f € W implies f = hg for some
h € D\{0}. By Proposition 3.6, 1t(f) = Au = max<{\ux} for a term A of h and a term u of
g. Then It(f) = 1t(\g). By Definition 3.10, G is a Grébner basis of W.

Below we will consider the Buchberger’s algorithm for computing a Grobner basis of a sub-
module W of F. This requires a suitable definition of the concept of S-polynomial. Since there

are many orthants we have to compute S-polynomials in every orthant.



Grébner bases in difference-differential modules and difference-differential dimension polynomials 1743

Definition 3.13. Let F be a finitely generated free D-module and f, g € F\{0}. For
every Aj let V(j, f,g) be a finite system of generators (which are terms) of the K[A;]-module
KA, (8N f) € AjEIN € A) ﬂK[Aj]ﬂt(ng) € AjE|n € A). Then for every generator v € V(j, f, g)

v foo v g
16;(f) Ue;(f)  1t(9) lc;(g)

is called an S-polynomial of f and g with respect to j and v.

S(j7f7g7v) =

The K[A ]-module considered in Definition 3.13 is a “monomial module”, i.e. it is generated
by elements containing only one term. Such a module always has a finite “monomial basis”,
i.e. every basis element contains only one term. In the following we assume that V(j, f, g) is
such a finite monomial basis.

The computation of V(j, f, g) is involved in the generalized term order on AE. Pauer and
Unterkircher!® researched V (4, f, g) in commutative Laurent polynomial rings and gave algo-
rithm for some important cases. Their results are still valid for difference-differential modules.
Example 3.14. Let FF = D = K[&l,ég,al,afl,ag,o@l] and K = Q(x1,22). Where 67,
0o are the partial derivative by z1, xo respectively, and a;, o are two automorphism on K.

Choose the generalized term order on N2 x Z? as in Example 2.8, i.e.

_ skagka 11 12 _ ST18T2 81 82
u=01"05"atay <v=70"0"a7"a;

= (||ull, k1, k2,11, 12) < (||v]], 71,72, 51, 82) in lexicographic order,

where ||u]| = — min(0, 1, 2).
Let f = al_2 — 02, g = 01 + a3. Note that the orthants of A are Ag, Ay, Ay described in
Example 2.3 for n = 2. Then we obtain that

(A e AIt(Af) € Ao} = ANoad,  {n € Aflt(ng) € Ao} = Ao;

and
{It(Nf) € Ag|A € A} = Agdac?,  {lt(ng) € Aojn € A} = Agds.

Therefore V (0, f, g) = {vo} = {§10203} and by Definition 3.13,
5(0, f,9,v0) = 6107 f + 62079 = 61 + 620705
Similarly we have

{)\ € A|1t}()\f) € Al} = Aloq, {’17 S A|1t(’l7_g) € Al} = Al;
{It(Af) € Ay [ A e A} = Aoyt {lt(ng) € Arln € A} = Aydy.

SoV(1, f,g) ={v1} = {51a1_1} and S(1, f,g,v1) = han f — al_lg = —0100001 — al_lo/Ql. Finally,

{A e AIt(Af) € Ao} = Aoaf,  {n € Aflt(ng) € As} = Ay;
{lt(Af) € AQ‘A (S A} = AQ&QQ%, {lt(’f]g) S A2|’I’) S A} = Ayd;.

So V (2, f,9) = {v2} = {610202} and S(2, f,g,v2) = 102 f + d2a2g = 61 + d2a2as.
For the proof of Theorem 3.17 we need the following lemmas:
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Lemma 3.15.  Let{r1,...,r} C F and{a1,...,a;} C K. If 23:1 a; =0, then 22:1 a;r; =

Zé;ll bj(r; —1j41) for some b; € K.

Proof.  Obviously

Zajrj =ay(r1 —r2) + (a1 +az)(r2 — r3) + (a1 + a2 + a3 )(r3 — r4)

+ot (e tat ot o) (nor =)+ (e +az+ -+ a)n

Since a; + as + -+ -+ a; = 0 it follows that 2221 a;rj = Zg;ll b;(r; —rj41) for some b; € K.
Lemma 3.16.  Let g;, g € F and 1t(\g;) = 1t(ngx) = uw € A;E, where X\, n € A. Then there
exist ( € Aj and v € V (4, i, gr) defined in Definition 3.13, such that uw = (v. Furthermore, if
G is a finite subset of F\{0} and the S-polynomials S(j7 Gi» Gk v) can be reduced to 0 by G then

) U 9i
S y Y, yV) = h
C (.7 9i, 9k ) ltj (gz) ICj (gl) It (gk IC] gk Z o

with 1t(hgg) < u for g € G.

Proof.  Suppose V(j,9i,9r) = {v1,...,u}. Then u = 3’ p,v,, where p, € K[A;]. Since
Pu = D, GuvAu, Where a,, € R and A, € Aj, it follows that u = Zu,u A (N Vp)-

Note that v and A,,v, are terms in A;F and we can rewrite the right of the equation such
that the terms A, v, are distinct. Then we see that there is a unique a,, = 1 and others are
zero. Then v = (v for a ( € A;j and v € V(J, g;, gk)-

Now if S(j, gi, gk, v) can be reduced to 0 by G then S(j, g, gk, v) = >_ e hyg and lt(hgg) =
16(S(J, 9i, gk, v)) < v for g € G. Therefore (S(j, gi, g, v) = - ,ec(Chy)g = > e hgg, where
hg = Chi,. By Lemma 3.4 (i), 1t(Ch,g) = Cw for a term w of hjg. Then 1t(hyg) = 1t(Chyg) = (w.
Therefore w < 1t(hyg) < v and ¢ € A; imply that (w < (v = u.

Theorem 3.17 (Generalized Buchberger Theorem).  Let F' be a free D-module and < be a
generalized term order on AE, G be a finite subset of F\{0} and W be the submodule in F
generated by G. Then G is a Grébner basis of W if and only if for all A;, for all g;, g € G
and for all v € V (3§, gi, gx), the S-polynomials S(j, gi, gr,v) can be reduced to 0 by G.

Proof. 1If G is a Grobner basis of W, since S(J, ¢i, gk, v) is an element of W, then it follows
from Proposition 3.11 that S(j, g, gx,v) can be reduced to 0 by G.

Now let G be a finite subset of F\{0} and W be the submodule in F' generated by G. Suppose
that for all A;, for all v € V(j, 9;,9x) and for all g;, gx € G, the S-polynomials S(3, g;, gx, v)
can be reduced to 0 by G. It suffices to show that for any f € W\{0}, there are A € A, g € G
such that 1t(f) = 1t(\g).

Since W is generated by G, we have f = e

Let v = max<{lt(hyg)|g € G}. We may choose the family {hy|g € G} such that u is minimal,
Le. if f =37 g hyg then u < max-{lt(hyg)|lg € G}. Note that u = Ag for all terms A of hy
and all g € G by Proposition 3.6.

If 1t(f) = u = lt(hyg) for some g € G, then it is follows from (3.5) that there is a term A
of hy such that 1t(f) = It(Ag). Therefore the proof would be completed. Hence it remains to
show that 1t(f) < u cannot hold.

hgg for some {hgy}gec C D.
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Suppose 1t(f) < u and let B = {g[lt(hgg) = u > 1t(f)}. Then by (3.5) in the proof of
Proposition 3.6, there is a unique term A, of hy, g € B, such that u = 1t(\gg) > 1t(nyg) for any
terms 1y # A\g of hg. Let ¢4 be the coefficient of hy at A,. We have

f= Z heg + Z hgg = Z CgAgg + Z(hg —CgAg)g + Z hgg, (3.7)
geB 9¢B geB gEB g¢B

where all terms appearing in the last two sums are < wu.
From Lemma 3.4 (i), suppose vy is the term of g such that u = 1t(A\yg) = A\jvy > Agv for any
terms v # vy of g. Let d4 be the coefficient of ¢g at v,. Then by Lemma 3.3,

Z CgAgg = Z CgAgdy (jg) = Z Cg(dlg)‘g + &) (CZ;)

geEB geB geB
=3 e, ((ig) + 3 ¢, (;) (3.8)
geB 9 geB 9

for some elements d’g € K and ¢, € D where all terms appearing in the last sum are < u.

Note that u appears only in

g g
Z codi g (dg> = Z cqdi Agug + Z codl g (dg - vg>

geB geB gEB
— ( Z cgd’g)u + Z CcgdyAg (dg - vg>
geB geEB 9

and all terms appearing in the last sum are < u. Since lt(f) < w it follows that }° 5 csdy = 0.
Denote /\g(dig) by 74, then by Lemma 3.15,

3 cgdgxg@) = S (egdry = S biklre, — 700) (3.9

geEB geEB ik

for some g;, gr € B.

Since 7g, — g, = A, (=) — A, (32) and Ay, vy, = Ag, vy, = u € AjE for some Aj, it follows
N 9k
from Lemma 3.14 that vy, = 1t;(g;), vg, = 1t;(gr), dg, = 1c;(9s), dg, = lc;(gr), Ag, = D
)\gk = ltj(#k) and then
u 9i u 9k

B ltj(gi) ICj(gi) B ltk(gk:) lcj(gk)

Tg;

i

-y

with lt(rg, —rg,) < w.
Note that for all A;, for all v € and for all g;, gr € G, the S-polynomials S(j, g;, g, v) can
be reduced to 0 by G. Then by Lemma 3.16, we have

Tg; = Tgp = Zpgg (3.10)
geG
with 1t(pgg) < u.
Replace the first sum in the right side of (3.7) by (3.8), and replace the first sum in the r.h.s
of (3.8) by (3.9), then substitute 4, —rg, in the r.h.s of (3.9) by (3.10), we get another form of

k
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f=24cqhyg and u = max~{lt(hgg)|g € G}, which is a contradiction to the minimality of w.
This completes the proof of the theorem.

Example 3.18. If W is a submodule of F' generated by a finite set G and every g € G
consists of only one term, then G is a Grébner basis of W. In fact in this case all S-polynomials
S(4,9i, gk, v) are 0. By Theorem 3.17 this implies that G is a Grobner basis of W.

Theorem 3.19 (Buchberger’s Algorithm).  Let F' be a free D-module and < be a generalized
term order on AE, G be a finite subset of F\{0} and W be the submodule in F generated by
G. For each Aj and f,g € F\{0} let V(j, f,g) and S(j, f,g,v) be as in Definition 3.13. Then
by the following algorithm a Grobner basis of W can be computed:

Input: G = {g1,...,9.} which is a set of generators of W;

output: G' = {g},...,g,} which is a Grébner basis of W;

Begin

Gy =G,

While there exist f,g € G; and v € V(4, f,g) such that S(j, f, g,v) reduced to r # 0 by G,

Do G;11:=G; U{r};

End
Proof. By Theorem 3.17 we only have to show that there is an ¢ € N such that G;11 = G;.
Suppose there is no such ¢ € N. Then we have an infinite chain of sets G; C G2 € --- C G; €
---. Since there is a finite number of orthans Aj,j =1,...,n, we may assume that 1t(r) € A;E
in every G;41 for a fixed j. Note that in every step of the algorithm we get 7 such that 1t(r) does
not equal any lt(Ag), A € A, g € G;. Also we have nlt(\g) = 1t(nAg) = 1t(Ng) € A;E for any
n € Aj and any lt(\g) € A;E by Lemma 3.4 (ii). So if It(r) € A;E then K](.i) =xa,) (It(Ag) €
MNENeEA, geGy) € Kj(-iﬂ) =k, (It(Ag) € AjEIN € A, g € Giy1) as K[Aj]-submodule of
@D.cr K[Ajle. Therefore for all i € N there is m € N such that KJ@ C KJ(»Hm). Since K[A;] is
noetherian, this is not possible.
Example 3.20. Let F' and the generalized term order on A as in Example 3.14. Let G =
{91,92,93} and g1 = a3+ 1,90 = a? — 1,93 = a?a3 + 1. Then G is a Grébner basis of W which
is generated by G. To prove this, we show all S-polynomials of G reduced to 0 by G.

Following the method described in Example 3.14, we have

V(O7gla92) = {a%a%}v V(laglag2) = {0‘1_1043}, V(Q,gl,!]Q) = {041052_1},
S(0,91, g2, @) = aigy — @392 = F + A = g1 + g2,

1

»n

-1 1.3 1 -1 3, —1 -1
Qy g1ty g =) ay +aray = (o] ay)gs,

1 3

1 - _
oy oy = (o]

(
(17917927011_10;2))) = al_
( 1

-1 -1 -1 -1 - -1
S(2,91,92, 105 ) =1y g1 — ) ay g2 = ay)gs

and

V(Oaglagii) = {a?agh V(laglvgB) = {aflag}, V(2791,93) = {a§1}7

S(nglag3aa%a4) = Ol%gl — g3 = a% — 1= go,

1 7

~1.3y_ —1 -1 1.3 1 1
S(1,091,93,0] ) =07 Q5 g1 — Q] Q03 =0 Oy — Q104

1

= (a7 'ay )gs — aradgr.
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Note that the r.h.s of this equation satisfies the condition in Theorem 3.7 (i), i.e. 1t(h;g;) < 1t(5),
where S = S(1,91, 93,07 *ad)),i = 1,3.

1y -1 1. _ 3 2. 3_ 3
5(27917937042 )—042 g1 — Qg g3 = Qg — 00y = —0r(2.

Finally,

V(0,92,93) = {ofe3}, V(l,g2.93) ={o7'}, V(2,92,93) = {a105 '},

So

5(0392793704%0/21) = O/ng2 — g3 = 70/21 — 1= —q1,
S(1,g2,93.01') = a7 tg2 — a7 lgs = a1a; + a1 = augi,

1 1 1 3.3

-1 -1 -1 -1 -1 -
5(2,02,93,0n0a5 ) =) 0y ga— 0, g3 = —0q Qp  — QT0G,

-1 -1 3
=Qq Qg g3+ Q10502

The r.h.s of this equation also satisfies the condition in Theorem 3.7 (i).
So, by Theorem 3.17, GG is a Grobner basis of .

4 Applications to difference-differential dimension polynomials
In this section we describe a new approach to computing difference-differential dimension poly-
nomials via the difference-differential Grobner bases. There are some classical approaches de-
scribed by many researchers (see Section 1). Our approach seems more general and more direct.

Let K be a A-o-field, D the ring of A-o-operators over K, M a finitely generated A-o-module
(i.e. a finitely generated difference-differential-module), F' a finitely generated free A-o-module.
And we will keep the notation and conventions of the preceding sections.

For A € A of the form (1.1), let ord\ = k1 +- -+ Ekpm + |11+ - -+ |ln|. Also, for w = Xe; € AE
of a term of F, let ord w = ordA. If u =} ., axA € D, then ord u = max{ordA|ay # 0}.

We may consider D as a filtered ring with the filtration (D,,),ez such that D, = {u €
Dlord u < p} for any pp € N and D, = 0 for g < 0. It is clear that |J{D,|p € Z} = D,
D, C Dy for any p € Z and D, D,, = D,,y, for any p,v € Z.

Definition 4.1. Let K be a A-o-field and M be a A-o-module. A sequence (M, ),cz of
K -vector subspaces of the module M is called a filtration of M if the following three conditions
hold:

(i) M, € M4 for all p € Z and M, = 0 for all sufficiently small i € Z (i.e. there is a
to € Z such that M, =0 for all p < po);

(i) U{Mylu € 2} = M;

(i) D, M, € M,, for any p € Z,v € N.

If every K-vector space M,, is of finite dimension and there exist numbers o € Z such that
D, M, = My, for all n > po, v € N, then the filtration (M) ,cz is called an excellent filtration
of M.

Example 4.2. Let M be a finitely generated A-g-module (i.e. a left D-module) with gen-
erators hy,...,hq. If M, = D,hy + --- + D,hg for any p € Z, then (M), ez is an excellent
filtration of M.
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Definition 4.3. Let K be a A-o-field, M and N be two A-c-modules over K. A homo-
morphism of K-modules f : M — N is called a A-o-homomorphism (or difference-differential
homomorphism), if f(Bx) = Bf(x) for any x € M, 8 € AUoc*. Surjective (respectively,
injective or bijective) A-c-homomorphism is called a A-o-epimorphism (respectively, A-o-
monomorphism or A-c-isomorphism).

Choose the canonical orthant decomposition on Z" as in Example 2.2 and define the gener-
alized term order “<” on AF of the terms of F' as follows (see Example 2.10):

_ sk Em o1 lnp. —_ ST T oy S1 Sngp .
fu=2067"--6prai’ - ape; and v =07"---0,maj’ -+ ogre;, then

u=<v<= (ord u,e;, k1, ... km, [lal, -y [lnl by oy 1)

< (ord v,e;,7r1,..., m, |1}, |Sn|,51,...,8n) in lexicographic order.

Theorem 4.4. Let K be a A-o-field, D the ring of A-o-operators over K and M be a
finitely generated A-o-module with generators hi,...,hq. Let F' be a free A-o-module with a
basis e1,...,eq and m: F — M the natural A-c-epimorphism of F' onto M (i.e. m(e;) = h;
fori=1,...,q).

Let M, be the vector K-space as in Example 4.2. Suppose G = {g1,...,94} is a Grébner
basis of N = ker m with respect to the generalized term order “ <7 defined above, U, is the set
of all terms w € AE such that ord w < p and w #1t(Ag;), A€ A, i =1,...,d. Then n(Uy,) is
a basis of the K -vector space M,,.

Proof.  First, we show that the set 7(U,) generates the K-vector space M,, = D, hy + --- +
D, hg. Suppose Ah; € M, and Ah; ¢ w(U,) for some i = 1,...,¢q, A € A, ord A < p. Then
Xe; ¢ U, whence Xe; =1t()\ g;) for some X' € A, g; € G. Therefore

N gj =ajXe; + Z ayAvey,

where a; # 0 and a, # 0 for finitely many a,. Obviously, A,e, < Ae; and then ord A, < p.
Since G C N = ker(n), we have 0 = m(g;) and

0=Nn(g;) =7\ gj) = a;jm(Ae;) + Zalﬂr()\,,el,) = a;\h; + Z ay Ay

So that Ah; is a finite linear combination with coefficients from K of some elements of the form
Avhy (1 < v < q) such that ord\, < p and Ae, < Ae;. Thus, we can apply the induction
to Ae; (A € A, 1 < j < ¢) with respect to the order “<” and obtain that every element Ah;
(ordX < p, 1 <i < ¢) can be written as a finite linear combination of elements of 7(U,) with
coefficients from K.

Now, let us prove that the set 7(U,) is linearly independent over K. Suppose that Zf:l aq(u;)
= 0 for some uy,...,u; € Uy, a1,...,a; € K. Let h = 22:1 a;u;. Then w(h) = 0 and then
h € N. Since It(h) = u; € {u1,...,w}, then lt(h) € U, and then lt(h) # lt(Ag;), A € A,
i=1,...,d, by the definition of U,,. Since G is a Grobner basis of NV it follows from Proposition
3.11 (iii) that h = 0. Therefore a; = --+ = a; = 0. This completes the proof of the theorem.

From Theorem 4.4 the dimension of M, as a K-vector space can be computed by Grébner

bases of difference-differential modules.
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Definition 4.5. A polynomial f(t1,...,t;) in I variables t1,...,t; with rational coefficients
is called numerical if f(t1,...,t;) € Z for all sufficiently large (r1,...,r;) € Z, i.c. there exists
a l-tuple (s1,...,s1) € Z' such that f(ri,...,r) € Z for all integers r1,...,r; € 7 with r; > 5;
(1<i<gli).

The following theorem proved by Levin[®! generalizes the Kondrateva’s result on the numerical
polynomials associated with subsets of N (cf. [17, 18] ) to the numerical polynomials associated
with subsets of N x Z"™.

Theorem 4.6. Let A be a subset of N™ x Z™. Choose the canonical orthant decomposition of
Z" (see Example 2.2). Let < be the partial order on N™ X Z™ such that (k1,...,km,l1,...,ln) <

(Piye ooy TmyS1y -+, 8n) if and only if (I1,...,1,) and (s1,...,8,) belong to a same orthant and
(1o Py I81]s s [8nl) € LK1y ek, 1], |ln]) + NF2Y
Furthermore, let
Wa = {w € N x Z"|there is no element a € A such that a<w}
and
Walr,s] = {(k1,- - kmy 1, o) € Walks + -+ ki <1y |l + - 4 1] < s}

Then there exists a numerical polynomial 1 A(t1,t2) in two variables t; and to with the following
properties:

(i) Ya(r,s) = Card Walr, s] for all sufficiently large (r,s) € N2.

(ii) deg Y4 <m +n, degs,va <m, and deg,, P4 < n.

(il) If A =0, then deg Y4 = m +n. In this case,

t+m\ « meini (T (ta+i
it = (") o () ()

(iv) Ya(t1,t2) =0 if and only if (0,...,0) € A.

In [9] the author used Theorem 4.6 to prove the existence of difference-differential dimension
polynomial v (¢1,t3) in two variables t1,ty of the difference-differential module M by means of
characteristic set with respect to a special reduction. But the approach of characteristic set
is not valid for the one-variable case. However, our approach of Grébner bases in difference-
differential modules can deal with the difference-differential dimension polynomials in one vari-
able effectively.

The analog of Theorem 4.6 for the existence of numerical polynomial ¢ 4(t) in one variable ¢
associated with the subset A of N x Z" can be obtained in the same way as that used in the
proof of Theorem 4.6. (cf. [9]). We state it as follows.

Corollary 4.7. Let A, < and W4 be the same as in the conditions of Theorem 4.6. Let
Walp) ={(k1, - km, 1,y ln) € Walky + -+ kp + |1 + - + |ln] < )

Then there exists a numerical polynomial ¢ 4(t) with the following properties:
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(1) ¢pa(u) = Card Wyu] for all sufficiently large 1 € N.
(i) deg pa < m+n, and if A =0 then deg ¢4 = m + n.
(iil) @a(t) =0 if and only if (0,...,0) € A.

Now we may use the approach of Grébner bases of difference-differential modules to compute
dimension polynomial in difference-differential modules. We give a definition after the following

theorem.

Theorem 4.8. Let K be a A-o-field, D the ring of A-c-operators over K and M be a finitely
generated A-o-module, and (M,,)cz an excellent filtration of M. Then there exists a numerical
polynomial ¢(t) such that deg(p(t)) < m—+n and ¢p(n) = dimpM,, for all sufficiently large p € N.
Furthermore, ¢(t) can be written as ¢(t) = (nfi‘fl)lthr” +o(t™*t™), a € Z and o(t"™*™) denotes
a polynomial from Qt] whose degree is less than m + n, and the integers d = degd(t), a, and
Adg(t) do not depend on the choice of a system of generators of the module M. (A¢(t) denotes

the d-th finite difference of ¢(t) : Ag(t) = p(t + 1) — d(t), A?P(t) = A(AG(t)), etc.)

Proof.  Since (M}),ecz is an excellent filtration of M it follows that every M, is a finitely
generated K-vector space and D, M,, = M, , for p > po, v =2 0. Let hy,...,hy be a basis
of the K-vector space M,,. Then the elements hi, ..., h, generate M as a left D-module and
My =371 Do
@(t) is a numerical polynomial with the desired properties that corresponds to the case pug =0
then ¢(t — po) is the one for arbitrary pi9 € Z.) Thus we may suppose that M = >"7 | Dh; and
M, =31 D,h; for all p € Z.

Let F be a free A-o-module with a basis e1,...,eq. Let m : F — M, N = kerm and
U, (& € N) be the same as in the conditions of Theorem 4.4. Furthermore, let “<” be the

h; for all u > po. Without loss of generality we can assume that pg = 0. (If

generalized term order on AF of the terms of F' and G = {g1,..., g4} be the Grobner basis of
N as in Theorem 4.4. By Theorem 4.4, for any u € N, 7(U,,) is a basis of the K-vector space
M,,. Note that in the second part of the proof of Theorem 4.4 it was shown that the restriction
of m on U, is bijective, we have dimg M, = Card n(U,) = Card(U,).

Note that U, = {w € AEJord w < p; w # It(Agi), A € A, g; € G}. Let Vi(j) be a finite
set of generators of the K[A;]-module ga;)(lt(Ag:) € A;E[X € A). Let V =, Vi(j). Then
U, ={w € AE|ord w < p; there is no v € V such that v <w}.

Let Ve, = {v € V|v = Xe;, A € A} and U,(f) = {w € Ae;lord w < p; there is no v € V¢, such
that v Qw}, i =1,...,¢q. Then Card(U,) = Y7, Card(UM).

By Corollary 4.7, there exists a numerical polynomial ¢;(¢) such that deg(¢;(t)) < m+n and
di(p) = Card(U;(f)), i=1,...,q, for all sufficiently large ;1 € N. Therefore ¢(t) = > 7_, ¢i(t)
satisfies that deg(¢(t)) < m + n and ¢(p) = Card(U,) = dimgM,, for all sufficiently large
weN.

The last conclusion of the theorem is well-known properties of the dimension polynomial ¢(t)
that satisfy that deg(¢(t)) < m + n and ¢(u) = dimgM,, for all sufficiently large p € N (cf.
[13]).

Definition 4.9.  The numerical polynomial ¢(t) in Theorem 4.8 is called difference-differential

dimension polynomial in one variable t associated with M.

The difference-differential dimension polynomial is treated as characteristics of the system



Grébner bases in difference-differential modules and difference-differential dimension polynomials 1751

3] and

of defining equations on the generators of M and determines “strength” (Kondrateva
Levin[) of the system of difference-differential equations.

In [15] the authors proved the existence of difference-differential dimension polynomials ¢(¢)
associated with M by classical Grobner basis methods of computation of Hilbert polynomials.
Now we present an alternate direct and algorithmic approach of Grobner bases on difference-
differential modules to compute the difference-differential dimension polynomials. The following
example shows that the computation of difference-differential dimension polynomials associated

with M is rather simple by the method described in Theorem 4.8.
Example 4.10. Let K be a difference-differential field whose basic sets A and o consist of

a single derivation operator ¢ and a single automorphism «, respectively. Furthermore, let D
be the ring of A-o-operators over K and M = Dh be a cyclic A-o-module whose generator h
satisfies the defining equation (6%a® + §%~° 4+ §%**)h = 0. In other words, M is isomorphic
to the factor module of a free A-o-module F' with a free generator e by its A-o-submodule
N = D(6% " + 6%a~" 4 6%t)e. Let the generalized term order < on AE be the same as in
Theorem 4.8. Then {g = (§%a® + §%a~% + §%?)e} is a Grébner basis of N (see Example
3.12). since It(g) = (09*°)e belongs to any ortant of AE, it follows from Lemma 3.4 (i) that
lt(Ag) = A(6%P)e for any A € A. Then by Theorem 4.8,

dimg M; = Card(Uy) = Card{u € Alordu < t;u # M\6%T°, X € A}.
Therefore,
dimg M; = Card{6°a?|c e N,d € Z,c + |d| < t,(c,|d|) ¢ {(a + b,0) + N*}}
= Card{0°a?lc e N,d € Z,c + |d| < t}
— Card{6°a?|c € N,d € Z,c+ |d| <t — (a +b)}
=[(t4+2)t+1)—(t+1)]—[t—a—b+2)(t—a—b+1)—(t—a—b+1)]
=2(a+bt+(a+b)(2—a-0).

<
<

The result of above example coincides with that shown in [9, 13]. But our approach is based
on computing the Grobner bases on difference-differential modules directly. The following
example shows that when we choose another generalized term order to compute the Grébner

bases we can also get the same difference-differential dimension polynomial.

Example 4.11. Let M be the A-o-module same as in Example 4.10. But the generalized

term order < on AF is defined as follows:
skale < o"afe <= (k4 |l|,|l|, k,1) < (r 4 |s|,|s|,7,s) in lexicographic order.

Note that Theorems 4.4 and 4.8 still valid for “<”. Denote {d*a!|l > 0} by A; and {§*a!|l < 0}
by As. Since lt(g) = 6%a’e € Ay and It(a~'g) = 6%~ ®*TVe € A, it follows that

{It(\g) € A1|X € A} = Ajd%be,  {lt(ng) € Agln € A} = Ay OHVe,
Therefore

dimg M, = Card{6°a®|c,d € N,c+d < t,(c,d) ¢ {(a,b) + N*}}
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+ Card{6°a’|c e N,d € Z,d < 0,c + |d| < t,(c,—d) ¢ {(a,b+ 1) + N*}}

- B(t+1)(t+2)—;(t—a—b+1)(t—a—b+2)]

+ Bt(t+1);(tab)(tab+1)}

=2(a+bt+ (a+b)(2—a—b).
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